論文の概要: Improved 2D Keypoint Detection in Out-of-Balance and Fall Situations --
combining input rotations and a kinematic model
- arxiv url: http://arxiv.org/abs/2112.12193v1
- Date: Wed, 22 Dec 2021 19:49:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-25 03:24:45.005437
- Title: Improved 2D Keypoint Detection in Out-of-Balance and Fall Situations --
combining input rotations and a kinematic model
- Title(参考訳): 外部・秋の2次元キーポイント検出の改善 -入力回転と運動モデルの組み合わせ-
- Authors: Michael Zw\"olfer and Dieter Heinrich and Kurt Schindelwig and Bastian
Wandt and Helge Rhodin and Joerg Spoerri and Werner Nachbauer
- Abstract要約: 損傷解析は、深層学習に基づく人間のポーズ推定の最も有益な応用の1つである。
本研究は,アルペンスキーの損傷特異的な2次元データセットを533枚の画像にまとめたものである。
回転情報と単純な運動モデルを組み合わせたポスト処理ルーチンを提案する。
- 参考スコア(独自算出の注目度): 10.027240997822553
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Injury analysis may be one of the most beneficial applications of deep
learning based human pose estimation. To facilitate further research on this
topic, we provide an injury specific 2D dataset for alpine skiing, covering in
total 533 images. We further propose a post processing routine, that combines
rotational information with a simple kinematic model. We could improve
detection results in fall situations by up to 21% regarding the PCK@0.2 metric.
- Abstract(参考訳): 損傷解析は、深層学習に基づく人間のポーズ推定の最も有益な応用の1つである。
この話題のさらなる研究を容易にするため、全533枚の画像をカバーするアルペンスキー用2Dデータセットを提供する。
さらに,回転情報と単純な運動モデルを組み合わせたポスト処理ルーチンを提案する。
我々は,PCK@0.2測定値に関して,秋の状況における検出結果を最大21%改善することができる。
関連論文リスト
- CameraHMR: Aligning People with Perspective [54.05758012879385]
モノクロ画像からの正確な3次元ポーズと形状推定の課題に対処する。
既存のトレーニングデータセットには、擬似基底真理(pGT)を持つ実画像が含まれている。
pGTの精度を向上させる2つの貢献をしている。
論文 参考訳(メタデータ) (2024-11-12T19:12:12Z) - A self-attention model for robust rigid slice-to-volume registration of functional MRI [4.615338063719135]
fMRIスキャン中の頭部の動きは、歪み、偏りの分析、コストの増加をもたらす。
本稿では,2次元fMRIスライスを3次元参照ボリュームに整列するエンド・ツー・エンドSVRモデルを提案する。
本モデルは,最先端のディープラーニング手法と比較して,アライメント精度の面での競合性能を実現する。
論文 参考訳(メタデータ) (2024-04-06T08:02:18Z) - LInKs "Lifting Independent Keypoints" -- Partial Pose Lifting for
Occlusion Handling with Improved Accuracy in 2D-3D Human Pose Estimation [4.648549457266638]
2Dキネマティックスケルトンから3D人間のポーズを復元する新しい教師なし学習法であるLInKsを提案する。
提案手法は,まず3次元領域に隠された2次元のポーズを持ち上げるという,ユニークな2段階のプロセスに従う。
このリフト・テン・フィルのアプローチは、2次元空間でのみポーズを完了したモデルよりもはるかに正確な結果をもたらす。
論文 参考訳(メタデータ) (2023-09-13T18:28:04Z) - UncLe-SLAM: Uncertainty Learning for Dense Neural SLAM [60.575435353047304]
我々は、高密度ニューラルネットワークの同時局所化とマッピング(SLAM)のための不確実性学習フレームワークを提案する。
本稿では,2次元入力データのみから自己教師付きで学習可能なセンサ不確実性推定のためのオンラインフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-19T16:26:25Z) - Improved Trajectory Reconstruction for Markerless Pose Estimation [0.0]
マーカーレスポーズ推定は、複数の同期および校正されたビューから人間の動きを再構築することを可能にする。
我々は、マーカーレスポーズ推定精度に基づいて、異なるキーポイント検出器と再構成アルゴリズムを試験した。
その結果、トップダウンのキーポイント検出器を用いて暗黙の関数で軌跡を再構築することで、正確で滑らかで解剖学的に妥当な軌跡が得られた。
論文 参考訳(メタデータ) (2023-03-04T13:16:02Z) - Vogtareuth Rehab Depth Datasets: Benchmark for Marker-less Posture
Estimation in Rehabilitation [55.41644538483948]
本研究では,リハビリテーションを行う患者の深度画像と2次元ポーズ情報を含む2つのリハビリテーション特異的ポーズデータセットを提案する。
我々は、非リハブベンチマークデータセットに基づいてトレーニングされた、最先端のマーカーレス姿勢推定モデルを用いている。
私たちのデータセットは、リハビリ特有の複雑な姿勢を検出するために、ポーズモデルを訓練するのに使用できます。
論文 参考訳(メタデータ) (2021-08-23T16:18:26Z) - Unsupervised Scale-consistent Depth Learning from Video [131.3074342883371]
本研究では,単眼深度推定器SC-Depthを提案する。
スケール一貫性予測の能力により,我々の単分子学習深層ネットワークは簡単にORB-SLAM2システムに統合可能であることを示す。
提案したハイブリッドPseudo-RGBD SLAMは、KITTIにおいて魅力的な結果を示し、追加のトレーニングなしでKAISTデータセットにうまく一般化する。
論文 参考訳(メタデータ) (2021-05-25T02:17:56Z) - Orientation Keypoints for 6D Human Pose Estimation [15.347102634852613]
骨格関節の完全な位置と回転を推定するための新しいアプローチである方向キーポイントを導入する。
モーションキャプチャーシステムは、全骨回転を推定するために一組のポイントマーカーを使用する方法に着想を得て、仮想マーカーを用いて十分な情報を生成する。
回転予測は関節角度の平均誤差を48%改善し、15個の骨回転で93%の精度を達成する。
論文 参考訳(メタデータ) (2020-09-10T15:15:12Z) - Appearance Learning for Image-based Motion Estimation in Tomography [60.980769164955454]
トモグラフィー画像では、取得した信号に擬似逆フォワードモデルを適用することにより、解剖学的構造を再構成する。
患者の動きは、復元過程における幾何学的アライメントを損なうため、運動アーティファクトが生じる。
本研究では,スキャン対象から独立して剛性運動の構造を認識する外観学習手法を提案する。
論文 参考訳(メタデータ) (2020-06-18T09:49:11Z) - A Deep Learning Approach for Motion Forecasting Using 4D OCT Data [69.62333053044712]
我々は,OCTボリュームのストリームを用いたエンド・ツー・エンド動作予測と推定のための4次元時間深度学習を提案する。
提案手法は,全体の平均相関97.41%の動作予測を実現するとともに,従来の3D手法と比較して2.5倍の動作推定性能を向上する。
論文 参考訳(メタデータ) (2020-04-21T15:59:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。