論文の概要: Data-efficient learning for 3D mirror symmetry detection
- arxiv url: http://arxiv.org/abs/2112.12579v1
- Date: Thu, 23 Dec 2021 14:37:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-24 19:16:57.048204
- Title: Data-efficient learning for 3D mirror symmetry detection
- Title(参考訳): 3次元ミラー対称性検出のためのデータ効率学習
- Authors: Yancong Lin, Silvia-Laura Pintea, Jan van Gemert
- Abstract要約: 単視点画像から3次元ミラー面を検出するための幾何学的な深層学習手法を提案する。
我々は、意味的特徴を抽出し、画素内相関を計算し、各平面に対して3次元相関ボリュームを構築する。
合成データセットと実世界のデータセットの両方の実験は、データ効率と推論速度を改善するために3Dミラー幾何の利点を示している。
- 参考スコア(独自算出の注目度): 9.904746542801838
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a geometry-inspired deep learning method for detecting 3D mirror
plane from single-view images. We reduce the demand for massive training data
by explicitly adding 3D mirror geometry into learning as an inductive prior. We
extract semantic features, calculate intra-pixel correlations, and build a 3D
correlation volume for each plane. The correlation volume indicates the extent
to which the input resembles its mirrors at various depth, allowing us to
identify the likelihood of the given plane being a mirror plane. Subsequently,
we treat the correlation volumes as feature descriptors for sampled planes and
map them to a unit hemisphere where the normal of sampled planes lies. Lastly,
we design multi-stage spherical convolutions to identify the optimal mirror
plane in a coarse-to-fine manner. Experiments on both synthetic and real-world
datasets show the benefit of 3D mirror geometry in improving data efficiency
and inference speed (up to 25 FPS).
- Abstract(参考訳): 単視点画像から3次元ミラー面を検出するための幾何学的な深層学習手法を提案する。
学習に3次元ミラー幾何を明示的に付加することにより、大規模なトレーニングデータの需要を減らします。
意味的特徴を抽出し、画素内相関を計算し、各平面に対して3次元相関ボリュームを構築する。
相関体積は、入力が様々な深さの鏡に類似している程度を示し、与えられた平面が鏡面である可能性を特定することができる。
次に, サンプル面の特徴記述子として相関体積を扱い, サンプル面の正規分布を単位半球にマッピングする。
最後に,多段階の球面畳み込みを設計し,最適ミラー面を粗い方法で同定する。
合成データと実世界のデータの両方に関する実験は、データ効率と推論速度(最大25fps)を改善する3dミラー幾何の利点を示している。
関連論文リスト
- MVSDet: Multi-View Indoor 3D Object Detection via Efficient Plane Sweeps [51.44887282336391]
多視点屋内3次元物体検出の課題は、画像から正確な幾何学情報を推測して正確な3次元物体検出を行うことである。
それまでの手法は、幾何推論にNeRFに依存していた。
平面スイープを用いた3次元物体検出のためのMVSDetを提案する。
論文 参考訳(メタデータ) (2024-10-28T21:58:41Z) - Object Modeling from Underwater Forward-Scan Sonar Imagery with Sea-Surface Multipath [16.057203527513632]
海面近傍で撮影された物体に対する重要な貢献は、気-水界面によるマルチパスアーチファクトの解決である。
ここでは、直接目標後方散乱によって形成された物体像は、ほとんど常にゴーストや鏡部品によって破壊される。
各ビュー内の劣化したオブジェクト領域をモデル化し,ローカライズし,破棄することにより,復元された3次元形状の歪みを回避する。
論文 参考訳(メタデータ) (2024-09-10T18:46:25Z) - VFMM3D: Releasing the Potential of Image by Vision Foundation Model for Monocular 3D Object Detection [80.62052650370416]
モノクル3Dオブジェクト検出は、自律運転やロボティクスなど、さまざまなアプリケーションにおいて重要な役割を担っている。
本稿では,VFMM3Dを提案する。VFMM3Dは,ビジョンファウンデーションモデル(VFM)の機能を利用して,単一ビュー画像を正確にLiDARポイントクラウド表現に変換する,革新的なフレームワークである。
論文 参考訳(メタデータ) (2024-04-15T03:12:12Z) - GeoGS3D: Single-view 3D Reconstruction via Geometric-aware Diffusion Model and Gaussian Splatting [81.03553265684184]
単視点画像から詳細な3Dオブジェクトを再構成するフレームワークであるGeoGS3Dを紹介する。
本稿では,GDS(Gaussian Divergence Significance)という新しい指標を提案する。
実験により、GeoGS3Dはビュー間で高い一貫性を持つ画像を生成し、高品質な3Dオブジェクトを再構成することを示した。
論文 参考訳(メタデータ) (2024-03-15T12:24:36Z) - Q-SLAM: Quadric Representations for Monocular SLAM [85.82697759049388]
四角形のレンズを通して体積表現を再現する。
我々は、RGB入力からノイズの深い深さ推定を正すために二次仮定を用いる。
本研究では,新たな二次分割変換器を導入し,二次情報を集約する。
論文 参考訳(メタデータ) (2024-03-12T23:27:30Z) - Normal Transformer: Extracting Surface Geometry from LiDAR Points
Enhanced by Visual Semantics [6.516912796655748]
本稿では,3次元点雲と2次元カラー画像から正規分布を推定する手法を提案する。
我々は,視覚的セマンティクスと3次元幾何データのハイブリッド情報を活用することを学ぶトランスフォーマーニューラルネットワークを開発した。
論文 参考訳(メタデータ) (2022-11-19T03:55:09Z) - SketchSampler: Sketch-based 3D Reconstruction via View-dependent Depth
Sampling [75.957103837167]
1枚のスケッチ画像に基づいて3次元形状を再構成することは、スパースで不規則なスケッチと正規の高密度な3次元形状との間に大きな領域ギャップがあるため困難である。
既存の作品では、3D座標を直接予測するためにスケッチから抽出されたグローバルな特徴を活用しようとするが、通常は入力スケッチに忠実でない細部を失う。
論文 参考訳(メタデータ) (2022-08-14T16:37:51Z) - Geometry-Contrastive Transformer for Generalized 3D Pose Transfer [95.56457218144983]
この研究の直感は、与えられたメッシュ間の幾何学的不整合を強力な自己認識機構で知覚することである。
本研究では,グローバルな幾何学的不整合に対する3次元構造的知覚能力を有する新しい幾何学コントラスト変換器を提案する。
本稿では, クロスデータセット3次元ポーズ伝達タスクのための半合成データセットとともに, 潜時等尺正則化モジュールを提案する。
論文 参考訳(メタデータ) (2021-12-14T13:14:24Z) - Efficient 3D Deep LiDAR Odometry [16.388259779644553]
PWCLO-Netという名前の効率的な3Dポイント・クラウド・ラーニング・アーキテクチャが最初に提案される。
アーキテクチャ全体は、コストボリュームとマスクの適応的な学習を実現するために、徹底的にエンドツーエンドに最適化されています。
論文 参考訳(メタデータ) (2021-11-03T11:09:49Z) - Recurrently Estimating Reflective Symmetry Planes from Partial
Pointclouds [5.098175145801009]
代わりに、高さ次元に沿ってデータをスライスし、2次元畳み込み再帰回帰スキームに順次渡す新しい符号化法を提案する。
提案手法は,全合成対象の平面反射対称性推定作業における最先端技術に匹敵する精度を有することを示す。
論文 参考訳(メタデータ) (2021-06-30T15:26:15Z) - Leveraging Planar Regularities for Point Line Visual-Inertial Odometry [13.51108336267342]
モノクラー・ビジュアル・慣性オドメトリー(VIO)システムでは、3Dポイント・クラウドとカメラ・モーションを同時に推定することができる。
平面規則性だけでなく点特徴や線特徴を利用するPLP-VIOを提案する。
提案手法の有効性を,合成データと公開データセットの両方で検証した。
論文 参考訳(メタデータ) (2020-04-16T18:20:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。