論文の概要: PandaSet: Advanced Sensor Suite Dataset for Autonomous Driving
- arxiv url: http://arxiv.org/abs/2112.12610v1
- Date: Thu, 23 Dec 2021 14:52:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-24 16:29:33.066039
- Title: PandaSet: Advanced Sensor Suite Dataset for Autonomous Driving
- Title(参考訳): PandaSet: 自動運転のための高度なセンサースイートデータセット
- Authors: Pengchuan Xiao, Zhenlei Shao, Steven Hao, Zishuo Zhang, Xiaolin Chai,
Judy Jiao, Zesong Li, Jian Wu, Kai Sun, Kun Jiang, Yunlong Wang, Diange Yang
- Abstract要約: PandaSetは、商用ライセンスのない完全かつ高精度な自動運転車センサーキットによって生成された最初のデータセットである。
データセットには100以上のシーンが含まれており、それぞれが8秒の長さで、オブジェクト分類用の28種類のラベルとセマンティックセグメンテーションのための37種類のラベルを提供する。
- 参考スコア(独自算出の注目度): 7.331883729089782
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The accelerating development of autonomous driving technology has placed
greater demands on obtaining large amounts of high-quality data.
Representative, labeled, real world data serves as the fuel for training deep
learning networks, critical for improving self-driving perception algorithms.
In this paper, we introduce PandaSet, the first dataset produced by a complete,
high-precision autonomous vehicle sensor kit with a no-cost commercial license.
The dataset was collected using one 360{\deg} mechanical spinning LiDAR, one
forward-facing, long-range LiDAR, and 6 cameras. The dataset contains more than
100 scenes, each of which is 8 seconds long, and provides 28 types of labels
for object classification and 37 types of labels for semantic segmentation. We
provide baselines for LiDAR-only 3D object detection, LiDAR-camera fusion 3D
object detection and LiDAR point cloud segmentation. For more details about
PandaSet and the development kit, see https://scale.com/open-datasets/pandaset.
- Abstract(参考訳): 自動運転技術の急速な発展により、大量の高品質なデータを得る必要性が高まっている。
代表的、ラベル付けされた現実世界のデータは、ディープラーニングネットワークのトレーニングの燃料となり、自動運転の知覚アルゴリズムを改善するのに不可欠である。
本稿では,無償商用ライセンスの完全かつ高精度な自動運転車用センサキットであるpandasetについて紹介する。
このデータセットは、360{\deg}の機械式回転式LiDARと前方向きの長距離LiDARと6台のカメラを使って収集された。
データセットには100以上のシーンが含まれており、それぞれが8秒の長さで、オブジェクト分類用の28種類のラベルとセマンティックセグメンテーションのための37種類のラベルを提供する。
我々は、LiDARのみの3Dオブジェクト検出、LiDARカメラ融合3Dオブジェクト検出、LiDARポイントクラウドセグメンテーションのベースラインを提供する。
PandaSetと開発キットの詳細については、https://scale.com/open-datasets/pandasetを参照してください。
関連論文リスト
- Zenseact Open Dataset: A large-scale and diverse multimodal dataset for
autonomous driving [3.549770828382121]
Zenseact Open dataset (ZOD)は、ヨーロッパ各国で2年以上にわたって収集された大規模かつ多様なデータセットである。
ZODは、同等のデータセットの中で、最高範囲と解像度のセンサーを備えている。
データセットはFrames、Sequences、Drivesで構成され、データの多様性とマルチモーダル時間学習のサポートの両方を含むように設計されている。
論文 参考訳(メタデータ) (2023-05-03T09:59:18Z) - SUPS: A Simulated Underground Parking Scenario Dataset for Autonomous
Driving [41.221988979184665]
SUPSは地下自動駐車のシミュレーションデータセットである。
複数のセンサーと連続したイメージに合わせた複数のセマンティックラベルを備えた複数のタスクをサポートする。
また、我々のデータセット上で、最先端のSLAMアルゴリズムと知覚モデルを評価する。
論文 参考訳(メタデータ) (2023-02-25T02:59:12Z) - Argoverse 2: Next Generation Datasets for Self-Driving Perception and
Forecasting [64.7364925689825]
Argoverse 2(AV2)は、自動運転分野の研究の知覚と予測のための3つのデータセットの集合である。
Lidarデータセットには、ラベルなしのLidar点雲とマップ整列ポーズの2万のシーケンスが含まれている。
Motion Forecastingデータセットには、各ローカルシーンにおける自動運転車と他のアクター間の興味深い、挑戦的なインタラクションのために採掘された25万のシナリオが含まれている。
論文 参考訳(メタデータ) (2023-01-02T00:36:22Z) - BEV-MAE: Bird's Eye View Masked Autoencoders for Point Cloud
Pre-training in Autonomous Driving Scenarios [51.285561119993105]
自律運転におけるLiDARに基づく3Dオブジェクト検出のための,効率的なマスク付きオートエンコーダ事前学習フレームワークであるBEV-MAEを提案する。
具体的には、3Dエンコーダ学習特徴表現を導くために,鳥の目視(BEV)誘導マスキング戦略を提案する。
学習可能なポイントトークンを導入し、3Dエンコーダの一貫性のある受容的フィールドサイズを維持する。
論文 参考訳(メタデータ) (2022-12-12T08:15:03Z) - aiMotive Dataset: A Multimodal Dataset for Robust Autonomous Driving
with Long-Range Perception [0.0]
このデータセットは、同期して校正されたLiDAR、カメラ、および360度の視野をカバーするレーダーセンサーを備えた176のシーンで構成されている。
収集したデータは、昼間、夜、雨の間に、高速道路、都市、郊外で撮影された。
我々は3次元物体検出のための一次元・多モードベースラインモデルを訓練した。
論文 参考訳(メタデータ) (2022-11-17T10:19:59Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
自律運転における3D知覚のための2つの重要なセンサーは、カメラとLiDARである。
これら2つのモダリティを融合させることで、3次元知覚モデルの性能を大幅に向上させることができる。
我々は、最先端の核融合法を初めてベンチマークした。
論文 参考訳(メタデータ) (2022-05-30T09:35:37Z) - One Million Scenes for Autonomous Driving: ONCE Dataset [91.94189514073354]
自律運転シナリオにおける3次元物体検出のためのONCEデータセットを提案する。
データは、利用可能な最大の3D自動運転データセットよりも20倍長い144時間の運転時間から選択される。
我々はONCEデータセット上で、様々な自己教師的・半教師的手法を再現し、評価する。
論文 参考訳(メタデータ) (2021-06-21T12:28:08Z) - PC-DAN: Point Cloud based Deep Affinity Network for 3D Multi-Object
Tracking (Accepted as an extended abstract in JRDB-ACT Workshop at CVPR21) [68.12101204123422]
点雲は3次元座標における空間データの密集したコンパイルである。
我々は3次元多目的追跡(MOT)のためのPointNetベースのアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-03T05:36:39Z) - PixSet : An Opportunity for 3D Computer Vision to Go Beyond Point Clouds
With a Full-Waveform LiDAR Dataset [0.11726720776908521]
Leddar PixSetは、自動運転研究開発のための新しい公開データセット(dataset.leddartech.com)である。
ピクセットデータセットは、高密度の都市部で記録された97のシーケンスから約29kフレームを含む。
論文 参考訳(メタデータ) (2021-02-24T01:13:17Z) - Cirrus: A Long-range Bi-pattern LiDAR Dataset [35.87501129332217]
我々は、自律運転タスクのための新しい長距離二パターンLiDARパブリックデータセットであるCirrusを紹介する。
我々のプラットフォームには高解像度ビデオカメラと250メートルの有効範囲のLiDARセンサーが装備されている。
Cirrusでは、8つのカテゴリのオブジェクトが、有効範囲全体のLiDAR点雲に完全に注釈付けされている。
論文 参考訳(メタデータ) (2020-12-05T03:18:31Z) - DMD: A Large-Scale Multi-Modal Driver Monitoring Dataset for Attention
and Alertness Analysis [54.198237164152786]
視覚は運転監視システム(DMS)の最も豊かで費用対効果の高い技術である
十分に大規模で包括的なデータセットの欠如は、DMS開発の進展のボトルネックとなっている。
本稿では,実運転シナリオとシミュレーション運転シナリオを含む広範囲なデータセットであるドライバモニタリングデータセット(DMD)を紹介する。
論文 参考訳(メタデータ) (2020-08-27T12:33:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。