A Policy Resonance Approach to Solve the Problem of Responsibility
Diffusion in Multiagent Reinforcement Learning
- URL: http://arxiv.org/abs/2208.07753v3
- Date: Tue, 5 Dec 2023 03:37:57 GMT
- Title: A Policy Resonance Approach to Solve the Problem of Responsibility
Diffusion in Multiagent Reinforcement Learning
- Authors: Qingxu Fu, Tenghai Qiu, Jianqiang Yi, Zhiqiang Pu, Xiaolin Ai, Wanmai
Yuan
- Abstract summary: Naively inheriting the single-agent exploration-exploitation strategy from single-agent algorithms causes potential collaboration failures.
We name this problem the Responsibility Diffusion (RD) as it shares similarities with a same-name social psychology effect.
We show that SOTA algorithms can equip this approach to promote the collaborative performance of agents in complex cooperative tasks.
- Score: 9.303181273699417
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: SOTA multiagent reinforcement algorithms distinguish themselves in many ways
from their single-agent equivalences. However, most of them still totally
inherit the single-agent exploration-exploitation strategy. Naively inheriting
this strategy from single-agent algorithms causes potential collaboration
failures, in which the agents blindly follow mainstream behaviors and reject
taking minority responsibility. We name this problem the Responsibility
Diffusion (RD) as it shares similarities with a same-name social psychology
effect. In this work, we start by theoretically analyzing the cause of this RD
problem, which can be traced back to the exploration-exploitation dilemma of
multiagent systems (especially large-scale multiagent systems). We address this
RD problem by proposing a Policy Resonance (PR) approach which modifies the
collaborative exploration strategy of agents by refactoring the joint agent
policy while keeping individual policies approximately invariant. Next, we show
that SOTA algorithms can equip this approach to promote the collaborative
performance of agents in complex cooperative tasks. Experiments are performed
in multiple test benchmark tasks to illustrate the effectiveness of this
approach.
Related papers
- Learning Emergence of Interaction Patterns across Independent RL Agents in Multi-Agent Environments [3.0284592792243794]
Bottom Up Network (BUN) treats the collective of multi-agents as a unified entity.
Our empirical evaluations across a variety of cooperative multi-agent scenarios, including tasks such as cooperative navigation and traffic control, consistently demonstrate BUN's superiority over baseline methods with substantially reduced computational costs.
arXiv Detail & Related papers (2024-10-03T14:25:02Z) - Enhancing Heterogeneous Multi-Agent Cooperation in Decentralized MARL via GNN-driven Intrinsic Rewards [1.179778723980276]
Multi-agent Reinforcement Learning (MARL) is emerging as a key framework for sequential decision-making and control tasks.
The deployment of these systems in real-world scenarios often requires decentralized training, a diverse set of agents, and learning from infrequent environmental reward signals.
We propose the CoHet algorithm, which utilizes a novel Graph Neural Network (GNN) based intrinsic motivation to facilitate the learning of heterogeneous agent policies.
arXiv Detail & Related papers (2024-08-12T21:38:40Z) - Robustifying a Policy in Multi-Agent RL with Diverse Cooperative Behaviors and Adversarial Style Sampling for Assistive Tasks [51.00472376469131]
We propose a framework that learns a robust caregiver's policy by training it for diverse care-receiver responses.
We demonstrate that policies trained with a popular deep RL method are vulnerable to changes in policies of other agents.
arXiv Detail & Related papers (2024-03-01T08:15:18Z) - Joint Intrinsic Motivation for Coordinated Exploration in Multi-Agent
Deep Reinforcement Learning [0.0]
We propose an approach for rewarding strategies where agents collectively exhibit novel behaviors.
Jim rewards joint trajectories based on a centralized measure of novelty designed to function in continuous environments.
Results show that joint exploration is crucial for solving tasks where the optimal strategy requires a high level of coordination.
arXiv Detail & Related papers (2024-02-06T13:02:00Z) - Deep Multi-Agent Reinforcement Learning for Decentralized Active
Hypothesis Testing [11.639503711252663]
We tackle the multi-agent active hypothesis testing (AHT) problem by introducing a novel algorithm rooted in the framework of deep multi-agent reinforcement learning.
We present a comprehensive set of experimental results that effectively showcase the agents' ability to learn collaborative strategies and enhance performance.
arXiv Detail & Related papers (2023-09-14T01:18:04Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
A central problem in the theory of multi-agent reinforcement learning (MARL) is to understand what structural conditions and algorithmic principles lead to sample-efficient learning guarantees.
We study this question in a general framework for interactive decision making with multiple agents.
We show that characterizing the statistical complexity for multi-agent decision making is equivalent to characterizing the statistical complexity of single-agent decision making.
arXiv Detail & Related papers (2023-05-01T06:46:22Z) - Learning Reward Machines in Cooperative Multi-Agent Tasks [75.79805204646428]
This paper presents a novel approach to Multi-Agent Reinforcement Learning (MARL)
It combines cooperative task decomposition with the learning of reward machines (RMs) encoding the structure of the sub-tasks.
The proposed method helps deal with the non-Markovian nature of the rewards in partially observable environments.
arXiv Detail & Related papers (2023-03-24T15:12:28Z) - Policy Diagnosis via Measuring Role Diversity in Cooperative Multi-agent
RL [107.58821842920393]
We quantify the agent's behavior difference and build its relationship with the policy performance via bf Role Diversity
We find that the error bound in MARL can be decomposed into three parts that have a strong relation to the role diversity.
The decomposed factors can significantly impact policy optimization on three popular directions.
arXiv Detail & Related papers (2022-06-01T04:58:52Z) - Learning Cooperative Multi-Agent Policies with Partial Reward Decoupling [13.915157044948364]
One of the preeminent obstacles to scaling multi-agent reinforcement learning is assigning credit to individual agents' actions.
In this paper, we address this credit assignment problem with an approach that we call textitpartial reward decoupling (PRD)
PRD decomposes large cooperative multi-agent RL problems into decoupled subproblems involving subsets of agents, thereby simplifying credit assignment.
arXiv Detail & Related papers (2021-12-23T17:48:04Z) - UneVEn: Universal Value Exploration for Multi-Agent Reinforcement
Learning [53.73686229912562]
We propose a novel MARL approach called Universal Value Exploration (UneVEn)
UneVEn learns a set of related tasks simultaneously with a linear decomposition of universal successor features.
Empirical results on a set of exploration games, challenging cooperative predator-prey tasks requiring significant coordination among agents, and StarCraft II micromanagement benchmarks show that UneVEn can solve tasks where other state-of-the-art MARL methods fail.
arXiv Detail & Related papers (2020-10-06T19:08:47Z) - Scalable Multi-Agent Inverse Reinforcement Learning via
Actor-Attention-Critic [54.2180984002807]
Multi-agent adversarial inverse reinforcement learning (MA-AIRL) is a recent approach that applies single-agent AIRL to multi-agent problems.
We propose a multi-agent inverse RL algorithm that is more sample-efficient and scalable than previous works.
arXiv Detail & Related papers (2020-02-24T20:30:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.