論文の概要: A machine learning analysis of the relationship between some underlying
medical conditions and COVID-19 susceptibility
- arxiv url: http://arxiv.org/abs/2112.12901v1
- Date: Fri, 24 Dec 2021 01:36:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-28 17:36:33.630590
- Title: A machine learning analysis of the relationship between some underlying
medical conditions and COVID-19 susceptibility
- Title(参考訳): 基礎疾患と新型コロナウイルス感受性との関連性に関する機械学習解析
- Authors: Mostafa Rezapour, Colin A. Varady
- Abstract要約: 新型コロナウイルス(COVID-19)として知られるコロナウイルスは、米国に住むすべての市民の生活に大きな影響を与えている。
いくつかのワクチンやブースターは、個人が利用するために永続的な治療法として作成されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For the past couple years, the Coronavirus, commonly known as COVID-19, has
significantly affected the daily lives of all citizens residing in the United
States by imposing several, fatal health risks that cannot go unnoticed. In
response to the growing fear and danger COVID-19 inflicts upon societies in the
USA, several vaccines and boosters have been created as a permanent remedy for
individuals to take advantage of. In this paper, we investigate the
relationship between the COVID-19 vaccines and boosters and the total case
count for the Coronavirus across multiple states in the USA. Additionally, this
paper discusses the relationship between several, selected underlying health
conditions with COVID-19. To discuss these relationships effectively, this
paper will utilize statistical tests and machine learning methods for analysis
and discussion purposes. Furthermore, this paper reflects upon conclusions made
about the relationship between educational attainment, race, and COVID-19 and
the possible connections that can be established with underlying health
conditions, vaccination rates, and COVID-19 total case and death counts.
- Abstract(参考訳): 過去数年間、新型コロナウイルス(covid-19)は米国に住むすべての国民の日常生活に大きな影響を与え、気づかれずにはいられないいくつかの致命的な健康リスクを課してきた。
米国の社会にcovid-19が与える恐怖と危険が高まる中で、個人が利用するための恒久的な治療として、いくつかのワクチンやブースターが作成されている。
本稿では,米国内の複数の州において,新型コロナウイルスワクチンとブースターの関連とコロナウイルスの総感染者数について検討する。
また,本研究は,いくつかの病原体とcovid-19の関連について述べる。
本稿では,これらの関係を効果的に議論するために,統計的テストと機械学習手法を用いて分析と議論を行う。
さらに, 教育的達成, 人種, およびcovid-19との関係と, 基礎疾患, ワクチン接種率, およびcovid-19総症例数, 死亡数との関連性について考察した。
関連論文リスト
- Population Age Group Sensitivity for COVID-19 Infections with Deep
Learning [0.0]
新型コロナウイルス(COVID-19)のパンデミックは、世界中の政府や医療システムにとって前例のない課題を生み出している。
この研究は、米国の郡レベルでの新型コロナウイルス感染率において最も影響力のある年齢層を特定することを目的としている。
論文 参考訳(メタデータ) (2023-07-03T04:56:55Z) - "COVID-19 was a FIFA conspiracy #curropt": An Investigation into the
Viral Spread of COVID-19 Misinformation [60.268682953952506]
我々は、自然言語処理モデルを用いて、誤報がCOVID-19パンデミックの進行にどのような影響を及ぼしたかを推定する。
我々は、広範囲に害をもたらす可能性のあるソーシャルメディアポストと戦うための戦略を提供する。
論文 参考訳(メタデータ) (2022-06-12T19:41:01Z) - Modeling the effect of the vaccination campaign on the Covid-19 pandemic [0.0]
予防接種キャンペーン中にコビッドウイルスの流行を予測できる数学的モデルであるSAIVRを紹介した。
このモデルは、半教師付き機械学習手法を用いて推定されるいくつかのパラメータと初期条件を含む。
これらの結果から, 日中感染率, ワクチン有効性, および, 広範囲の社会的ワクチン依存度, デンタルレベルにおいて, パンデミックの経時的変化について広範な研究を行った。
論文 参考訳(メタデータ) (2021-08-27T19:12:13Z) - Artificial Intelligence (AI) and Big Data for Coronavirus (COVID-19)
Pandemic: A Survey on the State-of-the-Arts [10.741018907229927]
2019年12月に中国・湖北省で初めて感染した新型コロナウイルス(COVID-19)が発見された。
新型コロナウイルス(COVID-19)のパンデミックは世界の214か国に広がり、私たちの日常生活のあらゆる側面に大きな影響を与えている。
近年の人工知能(AI)の進歩と、さまざまな分野におけるビッグデータの応用に触発され、新型コロナウイルスの感染拡大に対応することの重要性を強調した。
論文 参考訳(メタデータ) (2021-07-17T13:12:30Z) - A New Screening Method for COVID-19 based on Ocular Feature Recognition
by Machine Learning Tools [66.20818586629278]
コロナウイルス感染症2019(COVID-19)は、数百万人に影響している。
一般的なCCDやCMOSカメラで撮影された視線領域の画像を分析する新しいスクリーニング手法は、新型コロナウイルスの急激なリスクスクリーニングを確実に実現する可能性がある。
論文 参考訳(メタデータ) (2020-09-04T00:50:27Z) - COVID-19 Pandemic Outbreak in the Subcontinent: A data-driven analysis [0.8057708414390126]
2019年12月下旬、中国湖北省武漢市で新型コロナウイルス(COVID-19)が流行した。
多くの研究が、この亜大陸は新型コロナウイルスの影響で最悪の地域にとどまる可能性があると主張している。
本稿ではバングラデシュ、インド、パキスタンの公開疫学データを用いて再生数を推定する。
論文 参考訳(メタデータ) (2020-08-22T10:40:17Z) - Understanding the temporal evolution of COVID-19 research through
machine learning and natural language processing [66.63200823918429]
重症急性呼吸器症候群2号(SARS-CoV-2)による新型コロナウイルス感染症(COVID-19)の流行は、世界中の人々の生活や社会に影響を与え続けている。
私たちは複数のデータソース、すなわちPubMedとArXivを使用し、現在のCOVID-19研究の風景を特徴づけるために、いくつかの機械学習モデルを構築しました。
調査の結果,PubMedとArXivで利用可能な研究の種類は異なることが確認された。
論文 参考訳(メタデータ) (2020-07-22T18:02:39Z) - Effectiveness and Compliance to Social Distancing During COVID-19 [72.94965109944707]
われわれは、米国内での新型コロナウイルスの感染拡大に対する在宅勤務注文の影響を評価するために、詳細なモビリティデータを用いている。
一方向性グランガー因果性(一方向性グランガー因果性)は、家庭で毎日過ごす時間の割合の中央値から、2週間の遅れを伴うCOVID-19関連死亡件数の日数までである。
論文 参考訳(メタデータ) (2020-06-23T03:36:19Z) - Cross-lingual Transfer Learning for COVID-19 Outbreak Alignment [90.12602012910465]
われわれは、Twitterを通じてイタリアの新型コロナウイルス感染症(COVID-19)の早期流行を訓練し、他のいくつかの国に移る。
実験の結果,クロスカントリー予測において最大0.85のスピアマン相関が得られた。
論文 参考訳(メタデータ) (2020-06-05T02:04:25Z) - Mapping the Landscape of Artificial Intelligence Applications against
COVID-19 [59.30734371401316]
世界保健機関(WHO)は、SARS-CoV-2ウイルスによる新型コロナウイルスの感染をパンデミックと宣言した。
我々は、機械学習と、より広範に、人工知能を用いた最近の研究の概要を、新型コロナウイルス危機の多くの側面に取り組むために提示する。
論文 参考訳(メタデータ) (2020-03-25T12:30:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。