Graph Collaborative Reasoning
- URL: http://arxiv.org/abs/2112.13705v2
- Date: Tue, 28 Dec 2021 19:13:02 GMT
- Title: Graph Collaborative Reasoning
- Authors: Hanxiong Chen, Yunqi Li, Shaoyun Shi, Shuchang Liu, He Zhu and
Yongfeng Zhang
- Abstract summary: Graph Collaborative Reasoning (GCR) can use the neighbor link information for relational reasoning on graphs from logical reasoning perspectives.
We provide a simple approach to translate a graph structure into logical expressions, so that the link prediction task can be converted into a neural logic reasoning problem.
To show the effectiveness of our work, we conduct experiments on graph-related tasks such as link prediction and recommendation based on commonly used benchmark datasets.
- Score: 18.45161138837384
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graphs can represent relational information among entities and graph
structures are widely used in many intelligent tasks such as search,
recommendation, and question answering. However, most of the graph-structured
data in practice suffers from incompleteness, and thus link prediction becomes
an important research problem. Though many models are proposed for link
prediction, the following two problems are still less explored: (1) Most
methods model each link independently without making use of the rich
information from relevant links, and (2) existing models are mostly designed
based on associative learning and do not take reasoning into consideration.
With these concerns, in this paper, we propose Graph Collaborative Reasoning
(GCR), which can use the neighbor link information for relational reasoning on
graphs from logical reasoning perspectives. We provide a simple approach to
translate a graph structure into logical expressions, so that the link
prediction task can be converted into a neural logic reasoning problem. We
apply logical constrained neural modules to build the network architecture
according to the logical expression and use back propagation to efficiently
learn the model parameters, which bridges differentiable learning and symbolic
reasoning in a unified architecture. To show the effectiveness of our work, we
conduct experiments on graph-related tasks such as link prediction and
recommendation based on commonly used benchmark datasets, and our graph
collaborative reasoning approach achieves state-of-the-art performance.
Related papers
- Link Prediction with Relational Hypergraphs [28.594243961681684]
Link prediction with knowledge graphs has been thoroughly studied in graph machine learning.
We propose a framework for link prediction with relational hypergraphs, unlocking applications of graph neural networks to fully relational structures.
arXiv Detail & Related papers (2024-02-06T15:05:40Z) - LUKE-Graph: A Transformer-based Approach with Gated Relational Graph
Attention for Cloze-style Reading Comprehension [13.173307471333619]
We propose the LUKE-Graph, a model that builds a heterogeneous graph based on the intuitive relationships between entities in a document.
We then use the Attention reading (RGAT) to fuse the graph's reasoning information and the contextual representation encoded by the pre-trained LUKE model.
Experimental results demonstrate that the LUKE-Graph achieves state-of-the-art performance with commonsense reasoning.
arXiv Detail & Related papers (2023-03-12T14:31:44Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
We investigate a previously overlooked phenomenon: in many cases, a densely connected, complementary graph can be found for the original graph.
The denser graph may share nodes with the original graph, which offers a natural bridge for transferring selective, meaningful knowledge.
We identify this setting as Graph Intersection-induced Transfer Learning (GITL), which is motivated by practical applications in e-commerce or academic co-authorship predictions.
arXiv Detail & Related papers (2023-02-27T22:56:06Z) - A Theory of Link Prediction via Relational Weisfeiler-Leman on Knowledge
Graphs [6.379544211152605]
Graph neural networks are prominent models for representation learning over graph-structured data.
Our goal is to provide a systematic understanding of the landscape of graph neural networks for knowledge graphs.
arXiv Detail & Related papers (2023-02-04T17:40:03Z) - Learning Representations of Entities and Relations [0.0]
This thesis focuses on improving knowledge graph representation with the aim of tackling the link prediction task.
The first contribution is HypER, a convolutional model which simplifies and improves upon the link prediction performance.
The second contribution is TuckER, a relatively straightforward linear model, which, at the time of its introduction, obtained state-of-the-art link prediction performance.
The third contribution is MuRP, first multi-relational graph representation model embedded in hyperbolic space.
arXiv Detail & Related papers (2022-01-31T09:24:43Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
We propose a joint emphgraph learning and matching network, named GLAM, to explore reliable graph structures for boosting graph matching.
The proposed method is evaluated on three popular visual matching benchmarks (Pascal VOC, Willow Object and SPair-71k)
It outperforms previous state-of-the-art graph matching methods by significant margins on all benchmarks.
arXiv Detail & Related papers (2021-09-01T08:24:02Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
We present a comprehensive study on graph embedded few-shot learning.
We introduce a graph regularization approach that allows a deeper understanding of the impact of incorporating graph information between labels.
Our approach improves the performance of strong base learners by up to 2% on Mini-ImageNet and 6.7% on ImageNet-FS.
arXiv Detail & Related papers (2021-02-14T05:28:13Z) - GraphOpt: Learning Optimization Models of Graph Formation [72.75384705298303]
We propose an end-to-end framework that learns an implicit model of graph structure formation and discovers an underlying optimization mechanism.
The learned objective can serve as an explanation for the observed graph properties, thereby lending itself to transfer across different graphs within a domain.
GraphOpt poses link formation in graphs as a sequential decision-making process and solves it using maximum entropy inverse reinforcement learning algorithm.
arXiv Detail & Related papers (2020-07-07T16:51:39Z) - Out-of-Sample Representation Learning for Multi-Relational Graphs [8.956321788625894]
We study the out-of-sample representation learning problem for non-attributed knowledge graphs.
We create benchmark datasets for this task, develop several models and baselines, and provide empirical analyses and comparisons of the proposed models and baselines.
arXiv Detail & Related papers (2020-04-28T00:53:01Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z) - Evaluating Logical Generalization in Graph Neural Networks [59.70452462833374]
We study the task of logical generalization using graph neural networks (GNNs)
Our benchmark suite, GraphLog, requires that learning algorithms perform rule induction in different synthetic logics.
We find that the ability for models to generalize and adapt is strongly determined by the diversity of the logical rules they encounter during training.
arXiv Detail & Related papers (2020-03-14T05:45:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.