Self-supervision of wearable sensors time-series data for influenza
detection
- URL: http://arxiv.org/abs/2112.13755v1
- Date: Mon, 27 Dec 2021 16:09:43 GMT
- Title: Self-supervision of wearable sensors time-series data for influenza
detection
- Authors: Arinbj\"orn Kolbeinsson, Piyusha Gade, Raghu Kainkaryam, Filip
Jankovic, Luca Foschini
- Abstract summary: We show that using self-supervised learning to predict next-day time-series values allows us to learn rich representations which can be adapted to perform accurate ILI prediction.
Our results show that predicting the next day's resting heart rate or time-in-bed during sleep provides better representations for ILI prediction.
- Score: 4.850820365312369
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Self-supervision may boost model performance in downstream tasks. However,
there is no principled way of selecting the self-supervised objectives that
yield the most adaptable models. Here, we study this problem on daily
time-series data generated from wearable sensors used to detect onset of
influenza-like illness (ILI). We first show that using self-supervised learning
to predict next-day time-series values allows us to learn rich representations
which can be adapted to perform accurate ILI prediction. Second, we perform an
empirical analysis of three different self-supervised objectives to assess
their adaptability to ILI prediction. Our results show that predicting the next
day's resting heart rate or time-in-bed during sleep provides better
representations for ILI prediction. These findings add to previous work
demonstrating the practical application of self-supervised learning from
activity data to improve health predictions.
Related papers
- SurvCORN: Survival Analysis with Conditional Ordinal Ranking Neural Network [4.772480981435387]
We propose SurvCORN, a novel method utilizing conditional ordinal ranking networks to predict survival curves directly.
We also introduce SurvMAE, a metric designed to evaluate the accuracy of model predictions in estimating time-to-event outcomes.
arXiv Detail & Related papers (2024-09-30T03:01:25Z) - Integrating Wearable Sensor Data and Self-reported Diaries for Personalized Affect Forecasting [2.36325543943271]
We propose a multimodal deep learning model for affect status forecasting.
This model combines a transformer encoder with a pre-trained language model, facilitating the integrated analysis of objective metrics and self-reported diaries.
Our results demonstrate that the proposed model achieves predictive accuracy of 82.50% for positive affect and 82.76% for negative affect, a full week in advance.
arXiv Detail & Related papers (2024-03-16T17:24:38Z) - Performative Time-Series Forecasting [71.18553214204978]
We formalize performative time-series forecasting (PeTS) from a machine-learning perspective.
We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts.
We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks.
arXiv Detail & Related papers (2023-10-09T18:34:29Z) - CenTime: Event-Conditional Modelling of Censoring in Survival Analysis [49.44664144472712]
We introduce CenTime, a novel approach to survival analysis that directly estimates the time to event.
Our method features an innovative event-conditional censoring mechanism that performs robustly even when uncensored data is scarce.
Our results indicate that CenTime offers state-of-the-art performance in predicting time-to-death while maintaining comparable ranking performance.
arXiv Detail & Related papers (2023-09-07T17:07:33Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
arXiv Detail & Related papers (2023-04-07T23:51:07Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
We train an auxiliary model with a self-supervised pretext task on top of an existing predictive model and use the self-supervised error as an additional feature to estimate nonconformity scores.
We empirically demonstrate the benefit of the additional information using both synthetic and real data on the efficiency (width), deficit, and excess of conformal prediction intervals.
arXiv Detail & Related papers (2023-02-23T18:57:14Z) - Forecasting Patient Flows with Pandemic Induced Concept Drift using
Explainable Machine Learning [0.0]
This study investigates how a suite of novel quasi-real-time variables can improve the forecasting models of patient flows.
The prevailing COVID-19 Alert Level feature together with Google search terms and pedestrian traffic were effective at producing generalisable forecasts.
arXiv Detail & Related papers (2022-11-01T20:42:26Z) - What Should I Know? Using Meta-gradient Descent for Predictive Feature
Discovery in a Single Stream of Experience [63.75363908696257]
computational reinforcement learning seeks to construct an agent's perception of the world through predictions of future sensations.
An open challenge in this line of work is determining from the infinitely many predictions that the agent could possibly make which predictions might best support decision-making.
We introduce a meta-gradient descent process by which an agent learns what predictions to make, 2) the estimates for its chosen predictions, and 3) how to use those estimates to generate policies that maximize future reward.
arXiv Detail & Related papers (2022-06-13T21:31:06Z) - Learning to Predict with Supporting Evidence: Applications to Clinical
Risk Prediction [9.199022926064009]
The impact of machine learning models on healthcare will depend on the degree of trust that healthcare professionals place in the predictions made by these models.
We present a method to provide people with clinical expertise with domain-relevant evidence about why a prediction should be trusted.
arXiv Detail & Related papers (2021-03-04T00:26:32Z) - EventScore: An Automated Real-time Early Warning Score for Clinical
Events [3.3039612529376625]
We build an interpretable model for the early prediction of various adverse clinical events indicative of clinical deterioration.
The model is evaluated on two datasets and four clinical events.
Our model can be entirely automated without requiring any manually recorded features.
arXiv Detail & Related papers (2021-02-11T11:55:08Z) - Improving Event Duration Prediction via Time-aware Pre-training [90.74988936678723]
We introduce two effective models for duration prediction.
One model predicts the range/unit where the duration value falls in (R-pred); and the other predicts the exact duration value E-pred.
Our best model -- E-pred, substantially outperforms previous work, and captures duration information more accurately than R-pred.
arXiv Detail & Related papers (2020-11-05T01:52:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.