論文の概要: Semi-supervised Salient Object Detection with Effective Confidence
Estimation
- arxiv url: http://arxiv.org/abs/2112.14019v2
- Date: Sun, 26 Nov 2023 00:40:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-30 18:05:32.923815
- Title: Semi-supervised Salient Object Detection with Effective Confidence
Estimation
- Title(参考訳): 有効信頼度推定による半教師付きサルエント物体検出
- Authors: Jiawei Liu, Jing Zhang, Nick Barnes
- Abstract要約: 本研究では,少数のラベル付きサンプルと多数のラベル付きサンプルにアクセス可能な半教師付きサルエント物体検出法について検討した。
本研究では,条件付きエネルギーベースモデルの潜伏変数を用いて,人体給与ラベルの性質をモデル化する。
ラベル付きサンプルは1/16に過ぎず,最先端の完全教師付きモデルと比較して競争性能が向上する。
- 参考スコア(独自算出の注目度): 35.0990691497574
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The success of existing salient object detection models relies on a large
pixel-wise labeled training dataset, which is time-consuming and expensive to
obtain. We study semi-supervised salient object detection, with access to a
small number of labeled samples and a large number of unlabeled samples.
Specifically, we present a pseudo label based learn-ing framework with a
Conditional Energy-based Model. We model the stochastic nature of human
saliency labels using the stochastic latent variable of the Conditional
Energy-based Model. It further enables generation of a high-quality pixel-wise
uncertainty map, highlighting the reliability of corresponding pseudo label
generated for the unlabeled sample. This minimises the contribution of
low-certainty pseudo labels in optimising the model, preventing the error
propagation. Experimental results show that the proposed strategy can
effectively explore the contribution of unlabeled data. With only 1/16 labeled
samples, our model achieves competitive performance compared with
state-of-the-art fully-supervised models.
- Abstract(参考訳): 既存の有能なオブジェクト検出モデルの成功は、大きなピクセル単位でラベル付けされたトレーニングデータセットに依存している。
我々は,少数のラベル付きサンプルと多数のラベル付きサンプルにアクセス可能な半教師付きサルエント物体検出について検討した。
具体的には,条件付エネルギーベースモデルを用いた擬似ラベル学習フレームワークを提案する。
条件付エネルギーベースモデルの確率的潜在変数を用いて,人間の給与ラベルの確率的性質をモデル化する。
さらに、未ラベルサンプルに対して生成された対応する擬似ラベルの信頼性を強調して、高品質な画素単位の不確かさマップを作成することができる。
これにより、モデル最適化における低確かさの擬似ラベルの寄与を最小化し、エラーの伝播を防止できる。
実験の結果,提案手法はラベルなしデータの寄与を効果的に探究できることがわかった。
ラベル付きサンプルは1/16に過ぎず,最先端の完全教師付きモデルと比較して競争性能が向上する。
関連論文リスト
- Exploring Beyond Logits: Hierarchical Dynamic Labeling Based on Embeddings for Semi-Supervised Classification [49.09505771145326]
モデル予測に依存しない階層型動的ラベル付け(HDL)アルゴリズムを提案し,画像埋め込みを用いてサンプルラベルを生成する。
本手法は,半教師付き学習における擬似ラベル生成のパラダイムを変える可能性がある。
論文 参考訳(メタデータ) (2024-04-26T06:00:27Z) - Sparse Generation: Making Pseudo Labels Sparse for weakly supervision with points [2.2241974678268903]
モデルのスパース出力の結果、弱教師付き擬似ラベルの生成を考える。
擬似ラベルをスパース化するスパース生成法を提案する。
論文 参考訳(メタデータ) (2024-03-28T10:42:49Z) - Perceptual Quality-based Model Training under Annotator Label Uncertainty [15.015925663078377]
アノテーションは、アノテータラベルの不確実性と呼ばれるデータラベリング中に不一致を示す。
モデル学習のための複数のラベルを客観的に生成する新しい知覚品質ベースモデルトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-15T10:52:18Z) - Decoupled Prototype Learning for Reliable Test-Time Adaptation [50.779896759106784]
テスト時間適応(TTA)は、推論中にトレーニング済みのソースモデルをターゲットドメインに継続的に適応させるタスクである。
1つの一般的なアプローチは、推定擬似ラベルによるクロスエントロピー損失を伴う微調整モデルである。
本研究は, 各試料の分類誤差を最小化することで, クロスエントロピー損失の脆弱性がラベルノイズを引き起こすことを明らかにした。
本稿では,プロトタイプ中心の損失計算を特徴とする新しいDPL法を提案する。
論文 参考訳(メタデータ) (2024-01-15T03:33:39Z) - SoftMatch: Addressing the Quantity-Quality Trade-off in Semi-supervised
Learning [101.86916775218403]
本稿では, サンプル重み付けを統一した定式化により, 一般的な擬似ラベル法を再検討する。
トレーニング中の擬似ラベルの量と質を両立させることでトレードオフを克服するSoftMatchを提案する。
実験では、画像、テキスト、不均衡な分類など、さまざまなベンチマークで大幅に改善されている。
論文 参考訳(メタデータ) (2023-01-26T03:53:25Z) - Rethinking Precision of Pseudo Label: Test-Time Adaptation via
Complementary Learning [10.396596055773012]
本稿では,テスト時間適応性を高めるための新しい補完学習手法を提案する。
テスト時適応タスクでは、ソースドメインからの情報は通常利用できない。
我々は,相補ラベルのリスク関数がバニラ損失式と一致することを強調した。
論文 参考訳(メタデータ) (2023-01-15T03:36:33Z) - Leveraging Instance Features for Label Aggregation in Programmatic Weak
Supervision [75.1860418333995]
Programmatic Weak Supervision (PWS) は、トレーニングラベルを効率的に合成するための広く普及したパラダイムとして登場した。
PWSのコアコンポーネントはラベルモデルであり、複数のノイズ管理ソースの出力をラベル関数として集約することで、真のラベルを推論する。
既存の統計ラベルモデルは一般的にLFの出力のみに依存し、基礎となる生成過程をモデル化する際のインスタンスの特徴を無視している。
論文 参考訳(メタデータ) (2022-10-06T07:28:53Z) - Seq-UPS: Sequential Uncertainty-aware Pseudo-label Selection for
Semi-Supervised Text Recognition [21.583569162994277]
最も一般的なSSLアプローチの1つは擬似ラベル(PL)である。
PL法はノイズによって著しく劣化し、ノイズの多いラベルに過度に適合する傾向がある。
テキスト認識のための擬似ラベル生成と不確実性に基づくデータ選択フレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-31T02:21:02Z) - Confidence Adaptive Regularization for Deep Learning with Noisy Labels [2.0349696181833337]
ディープニューラルネットワークのノイズラベルに対する記憶効果に関する最近の研究は、ネットワークが正しくラベル付けされたトレーニングサンプルに最初に適合し、誤ってラベル付けされたサンプルを記憶することを示している。
そこで本研究では,この早期学習現象に触発されて,誤記サンプルの暗記を防止する新しい方法を提案する。
我々は,合成および実世界のデータセットに関する理論的解析と実験を行い,本手法が最先端の手法に匹敵する結果をもたらすことを示す。
論文 参考訳(メタデータ) (2021-08-18T15:51:25Z) - Minimax Active Learning [61.729667575374606]
アクティブラーニングは、人間のアノテーションによってラベル付けされる最も代表的なサンプルをクエリすることによって、ラベル効率の高いアルゴリズムを開発することを目指している。
現在のアクティブラーニング技術は、最も不確実なサンプルを選択するためにモデルの不確実性に頼るか、クラスタリングを使うか、最も多様なラベルのないサンプルを選択するために再構築する。
我々は,不確実性と多様性を両立させる半教師付きミニマックスエントロピーに基づく能動学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-12-18T19:03:40Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
各サンプルに割り当てられた擬似ラベルの信頼性を推定・活用し,ノイズラベルの影響を緩和する。
不確実性に基づく最適化は大幅な改善をもたらし、ベンチマークデータセットにおける最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2020-12-16T04:09:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。