論文の概要: Sparse Generation: Making Pseudo Labels Sparse for weakly supervision with points
- arxiv url: http://arxiv.org/abs/2403.19306v1
- Date: Thu, 28 Mar 2024 10:42:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 16:33:46.165479
- Title: Sparse Generation: Making Pseudo Labels Sparse for weakly supervision with points
- Title(参考訳): スパース・ジェネレーション:プシュード・ラベル・スパースをポイントで弱体化させる
- Authors: Tian Ma, Chuyang Shang, Wanzhu Ren, Yuancheng Li, Jiiayi Yang, Jiali Qian,
- Abstract要約: モデルのスパース出力の結果、弱教師付き擬似ラベルの生成を考える。
擬似ラベルをスパース化するスパース生成法を提案する。
- 参考スコア(独自算出の注目度): 2.2241974678268903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, research on point weakly supervised object detection (PWSOD) methods in the field of computer vision has attracted people's attention. However, existing pseudo labels generation methods perform poorly in a small amount of supervised annotation data and dense object detection tasks. We consider the generation of weakly supervised pseudo labels as the result of model's sparse output, and propose a method called Sparse Generation to make pseudo labels sparse. It constructs dense tensors through the relationship between data and detector model, optimizes three of its parameters, and obtains a sparse tensor via coordinated calculation, thereby indirectly obtaining higher quality pseudo labels, and solving the model's density problem in the situation of only a small amount of supervised annotation data can be used. On two broadly used open-source datasets (RSOD, SIMD) and a self-built dataset (Bullet-Hole), the experimental results showed that the proposed method has a significant advantage in terms of overall performance metrics, comparing to that state-of-the-art method.
- Abstract(参考訳): 近年,コンピュータビジョン分野におけるPWSOD法の研究が注目されている。
しかし、既存の擬似ラベル生成手法は、少量の教師付きアノテーションデータと高密度オブジェクト検出タスクにおいて、不十分に機能する。
モデルのスパース出力の結果,弱い教師付き擬似ラベルの生成を考慮し,スパース生成と呼ばれる手法を提案する。
データと検出器モデルの関係を通して密度テンソルを構築し、その3つのパラメータを最適化し、座標計算によりスパーステンソルを取得し、より高品質な擬似ラベルを間接的に取得し、少量の教師付きアノテーションデータしか使用できない状況下でモデルの密度問題を解く。
広く使われている2つのオープンソースデータセット(RSOD, SIMD)と自己構築データセット(Bullet-Hole)について, 実験結果から, 提案手法は, その最先端手法と比較して, 全体的な性能指標において有意な優位性を示した。
関連論文リスト
- TrajSSL: Trajectory-Enhanced Semi-Supervised 3D Object Detection [59.498894868956306]
Pseudo-labeling approach to semi-supervised learning は教師-学生の枠組みを採用する。
我々は、事前学習した動き予測モデルを活用し、擬似ラベル付きデータに基づいて物体軌跡を生成する。
提案手法は2つの異なる方法で擬似ラベル品質を向上する。
論文 参考訳(メタデータ) (2024-09-17T05:35:00Z) - Approaching Outside: Scaling Unsupervised 3D Object Detection from 2D Scene [22.297964850282177]
教師なし3次元検出のためのLiDAR-2D Self-paced Learning (LiSe)を提案する。
RGB画像は、正確な2Dローカライゼーションキューを提供するLiDARデータの貴重な補完となる。
本フレームワークでは,適応型サンプリングと弱いモデルアグリゲーション戦略を組み込んだ自己評価学習パイプラインを考案する。
論文 参考訳(メタデータ) (2024-07-11T14:58:49Z) - Decoupled Pseudo-labeling for Semi-Supervised Monocular 3D Object Detection [108.672972439282]
SSM3ODに対するDPL(decoupled pseudo-labeling)アプローチを提案する。
提案手法は,擬似ラベルを効率的に生成するためのDPGモジュールを特徴とする。
また,擬似ラベルの雑音深度監視による最適化競合を軽減するために,DGPモジュールを提案する。
論文 参考訳(メタデータ) (2024-03-26T05:12:18Z) - Augment and Criticize: Exploring Informative Samples for Semi-Supervised
Monocular 3D Object Detection [64.65563422852568]
我々は、一般的な半教師付きフレームワークを用いて、難解な単分子3次元物体検出問題を改善する。
我々は、ラベルのないデータから豊富な情報的サンプルを探索する、新しい、シンプルで効果的なAugment and Criticize'フレームワークを紹介します。
3DSeMo_DLEと3DSeMo_FLEXと呼ばれる2つの新しい検出器は、KITTIのAP_3D/BEV(Easy)を3.5%以上改善した。
論文 参考訳(メタデータ) (2023-03-20T16:28:15Z) - Collaborative Propagation on Multiple Instance Graphs for 3D Instance
Segmentation with Single-point Supervision [63.429704654271475]
本稿では,1つのオブジェクトを1つのポイントでラベル付けするだけでよい,弱教師付き手法RWSegを提案する。
これらの疎いラベルにより、セマンティック情報とインスタンス情報を伝達する2つの分岐を持つ統一的なフレームワークを導入する。
具体的には、異なるインスタンスグラフ間の競合を促進するクロスグラフ競合ランダムウォークス(CRW)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-10T02:14:39Z) - GLENet: Boosting 3D Object Detectors with Generative Label Uncertainty Estimation [70.75100533512021]
本稿では,対象物の潜在的可算有界箱の多様性として,ラベルの不確実性問題を定式化する。
本稿では,条件付き変分オートエンコーダを応用した生成フレームワークであるGLENetを提案する。
GLENetが生成するラベルの不確実性はプラグアンドプレイモジュールであり、既存のディープ3D検出器に便利に統合することができる。
論文 参考訳(メタデータ) (2022-07-06T06:26:17Z) - Weakly-Supervised Salient Object Detection Using Point Supervison [17.88596733603456]
現在の最先端の精度検出モデルは、正確なピクセル単位のアノテーションの大規模なデータセットに大きく依存している。
本稿では,ポイント・インスペクタを用いた弱教師付きサルエント・オブジェクト検出手法を提案する。
我々の手法は、より強い監督力で訓練された従来の最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2022-03-22T12:16:05Z) - Semi-supervised Salient Object Detection with Effective Confidence
Estimation [35.0990691497574]
本研究では,少数のラベル付きサンプルと多数のラベル付きサンプルにアクセス可能な半教師付きサルエント物体検出法について検討した。
本研究では,条件付きエネルギーベースモデルの潜伏変数を用いて,人体給与ラベルの性質をモデル化する。
ラベル付きサンプルは1/16に過ぎず,最先端の完全教師付きモデルと比較して競争性能が向上する。
論文 参考訳(メタデータ) (2021-12-28T07:14:48Z) - ST3D++: Denoised Self-training for Unsupervised Domain Adaptation on 3D
Object Detection [78.71826145162092]
本稿では,ST3D++という名前の自己学習手法を提案する。
擬似ラベル生成プロセスにハイブリット品質を意識した三重項メモリを組み込むことにより、生成された擬似ラベルの品質と安定性を向上させる。
モデルトレーニングの段階では、ソースデータ支援トレーニング戦略とカリキュラムデータ拡張ポリシーを提案する。
論文 参考訳(メタデータ) (2021-08-15T07:49:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。