Coherent Atom Transport via Enhanced Shortcuts to Adiabaticity:
Double-Well Optical Lattice
- URL: http://arxiv.org/abs/2112.14039v3
- Date: Sat, 9 Jul 2022 17:34:32 GMT
- Title: Coherent Atom Transport via Enhanced Shortcuts to Adiabaticity:
Double-Well Optical Lattice
- Authors: Sascha H. Hauck, Vladimir M. Stojanovic
- Abstract summary: We study fast atomic transport in a moving em double-well optical lattice.
We use two classes of quantum-control methods: shortcuts to adiabaticity (STA) and enhanced STA.
This study has direct implications for neutral-atom quantum computing.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Theoretical studies of coherent atom transport have as yet mainly been
restricted to one-dimensional model systems with harmonic trapping potentials.
Here we investigate this important phenomenon -- a prerequisite for a variety
of quantum-technology applications based on cold neutral atoms -- under much
more complex physical circumstances. More specificially yet, we study fast
atomic transport in a moving {\em double-well optical lattice}, whose
three-dimensional (anharmonic) potential is nonseparable in the $x-y$ plane. We
first propose specific configurations of acousto-optic modulators that give
rise to the moving-lattice effect in an arbitrary direction in this plane. We
then determine moving-lattice trajectories that enable single-atom transport
using two classes of quantum-control methods: shortcuts to adiabaticity (STA),
here utilized in the form of inverse engineering based on a
quadratic-in-momentum dynamical invariant of Lewis-Riesenfeld type, and their
recently proposed modification termed enhanced STA (eSTA). Subsequently, we
quantify the resulting single-atom dynamics by numerically solving the relevant
time-dependent Schr\"{o}dinger equations and compare the efficiency of STA- and
eSTA-based transport by evaluating the respective fidelities. We show that --
except for the regime of shallow lattices -- the eSTA method consistently
outperforms its STA counterpart. This study has direct implications for
neutral-atom quantum computing based on collisional entangling two-qubit gates
and quantum sensing of constant homogeneous forces via guided-atom
interferometry.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Probing Confinement Through Dynamical Quantum Phase Transitions: From
Quantum Spin Models to Lattice Gauge Theories [0.0]
We show that a change in the type of dynamical quantum phase transitions accompanies the confinement-deconfinement transition.
Our conclusions can be tested in modern quantum-simulation platforms, such as ion-trap setups and cold-atom experiments of gauge theories.
arXiv Detail & Related papers (2023-10-18T18:00:04Z) - Spectral Engineering of Cavity-Protected Polaritons in an Atomic
Ensemble with Controlled Disorder [0.0]
We observe the transition from a disordered regime to a polaritonic one with only two resonances.
We realize a dynamically modulated Tavis-Cumming model to produce a comb of narrow polariton resonances protected from the disorder.
arXiv Detail & Related papers (2022-08-25T13:40:32Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Single-atom transport in optical conveyor belts: Enhanced
shortcuts-to-adiabaticity approach [0.0]
atomic transport, enabled by moving the confining trap, is a prerequisite for many quantum-technology applications.
We investigate it here in the experimentally relevant setting of a moving optical lattice (em optical conveyor belt)
We model single-atom transport in this system by taking fully into account its three-dimensional, anharmonic confining potential.
arXiv Detail & Related papers (2021-08-23T18:01:04Z) - Coherent Perfect Absorption in Tavis-Cummings Models [3.3726274202964635]
We study the conditions under which two laser fields can undergo Coherent Perfect Absorption (CPA)
We find that in the strong-coupling regime of cavity quantum electrodynamics, the strong DDI and the emitter-cavity detuning can act together to achieve the CPA.
Our CPA results are potentially applicable in building quantum memories that are an essential component in long-distance quantum networking.
arXiv Detail & Related papers (2021-08-12T18:39:13Z) - Coherent ground-state transport of neutral atoms [1.433758865948252]
We construct a theoretical model via second-order perturbation theory to realize a long-range coherent transport inside the ground-state manifold of neutral atoms system.
This model can be used to simulate various single-body physics phenomena such as Heisenberg $XX$ spin chain restricted in the single-excitation manifold.
arXiv Detail & Related papers (2021-07-06T03:59:15Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.