論文の概要: Generative Modeling of Discrete Joint Distributions by E-Geodesic Flow
Matching on Assignment Manifolds
- arxiv url: http://arxiv.org/abs/2402.07846v1
- Date: Mon, 12 Feb 2024 17:56:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-13 13:05:06.643108
- Title: Generative Modeling of Discrete Joint Distributions by E-Geodesic Flow
Matching on Assignment Manifolds
- Title(参考訳): 割り当て多様体上のE-Geodesic Flow Matchingによる離散関節分布の生成モデリング
- Authors: Bastian Boll, Daniel Gonzalez-Alvarado, Christoph Schn\"orr
- Abstract要約: 一般の非分解離散分布は、部分多様体をすべての合同離散分布のメタプレプレックスに埋め込むことで近似することができる。
離散分布を分解する測地線の流れをマッチングすることにより、生成モデルの効率的な訓練を実演する。
- 参考スコア(独自算出の注目度): 0.8594140167290099
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a novel generative model for discrete distributions
based on continuous normalizing flows on the submanifold of factorizing
discrete measures. Integration of the flow gradually assigns categories and
avoids issues of discretizing the latent continuous model like rounding, sample
truncation etc. General non-factorizing discrete distributions capable of
representing complex statistical dependencies of structured discrete data, can
be approximated by embedding the submanifold into a the meta-simplex of all
joint discrete distributions and data-driven averaging. Efficient training of
the generative model is demonstrated by matching the flow of geodesics of
factorizing discrete distributions. Various experiments underline the
approach's broad applicability.
- Abstract(参考訳): 本稿では、離散測度を分解する部分多様体上の連続正規化フローに基づく離散分布の新しい生成モデルを提案する。
フローの統合は徐々にカテゴリを割り当て、ラウンドリングやサンプルトランケーションといった潜在的連続モデルを識別する問題を回避します。
構造化離散データの複雑な統計的依存関係を表現できる一般的な非分解離散分布は、部分多様体を全ての結合離散分布のメタプレプレックスに埋め込み、データ駆動平均化によって近似することができる。
離散分布を分解する測地線の流れをマッチングすることにより、生成モデルの効率的な訓練を実演する。
様々な実験は、アプローチの幅広い適用性を説明する。
関連論文リスト
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
本報告では,明示的な次元の一般スコアミスマッチ拡散サンプリング器を用いた最初の性能保証について述べる。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - How Discrete and Continuous Diffusion Meet: Comprehensive Analysis of Discrete Diffusion Models via a Stochastic Integral Framework [11.71206628091551]
L'evy型積分に基づく離散拡散モデルの誤差解析のための包括的フレームワークを提案する。
我々のフレームワークは、離散拡散モデルにおける現在の理論結果を統一し、強化する。
論文 参考訳(メタデータ) (2024-10-04T16:59:29Z) - Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
連続時間マルコフ連鎖(CTMC)に基づくスコアベース離散拡散モデルの理論的側面について検討する。
本稿では,事前定義された時間点におけるスコア推定値を利用する離散時間サンプリングアルゴリズムを一般状態空間$[S]d$に導入する。
我々の収束解析はジルサノフ法を用いて離散スコア関数の重要な性質を確立する。
論文 参考訳(メタデータ) (2024-10-03T09:07:13Z) - Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
本研究では,相互依存データに対する問題に対して,学習可能な分散場を持つ幾何学的拡散モデルを提案する。
因果推論によって新たな学習目標が導出され、ドメイン間で無神経な相互依存の一般化可能なパターンを学習するためのモデルが導出される。
論文 参考訳(メタデータ) (2024-06-07T14:29:21Z) - Generative Assignment Flows for Representing and Learning Joint Distributions of Discrete Data [2.6499018693213316]
本稿では,多数の離散確率変数の結合確率分布を表現するための新しい生成モデルを提案する。
全ての離散な関節分布のメタ・プレプレックスにおけるセグレ写像による流れの埋め込みは、任意の対象分布を原理的に表すことができることを保証している。
我々のアプローチは、結合された離散変数のモデリングの第一原理から強い動機を持っている。
論文 参考訳(メタデータ) (2024-06-06T21:58:33Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
拡散モデルは、所望の特性に向けてサンプル生成を操るために、スコア関数にタスク固有の情報を注入することの恩恵を受ける。
本稿では,ガウス混合モデルの文脈における拡散モデルに対する誘導の影響を理解するための最初の理論的研究を提供する。
論文 参考訳(メタデータ) (2024-03-03T23:15:48Z) - Convergence Analysis of Discrete Diffusion Model: Exact Implementation
through Uniformization [17.535229185525353]
連続マルコフ連鎖の均一化を利用したアルゴリズムを導入し、ランダムな時間点の遷移を実装した。
我々の結果は、$mathbbRd$における拡散モデルの最先端の成果と一致し、さらに$mathbbRd$設定と比較して離散拡散モデルの利点を浮き彫りにする。
論文 参考訳(メタデータ) (2024-02-12T22:26:52Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
本稿では,未知の低次元線形部分空間上でデータをサポートする場合の拡散モデルのスコア近似,推定,分布回復について検討する。
適切に選択されたニューラルネットワークアーキテクチャでは、スコア関数を正確に近似し、効率的に推定することができる。
推定スコア関数に基づいて生成された分布は、データ幾何学構造を捕捉し、データ分布の近傍に収束する。
論文 参考訳(メタデータ) (2023-02-14T17:02:35Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - Resampling Base Distributions of Normalizing Flows [0.0]
学習された拒絶サンプリングに基づいて,フローを正規化するためのベース分布を導入する。
ログライクリフの最大化と逆Kulback-Leibler分散の最適化の両方を用いて、適切な学習アルゴリズムを開発する。
論文 参考訳(メタデータ) (2021-10-29T14:44:44Z) - A likelihood approach to nonparametric estimation of a singular
distribution using deep generative models [4.329951775163721]
深部生成モデルを用いた特異分布の非パラメトリック推定の可能性について検討する。
我々は、インスタンスノイズでデータを摂動することで、新しい効果的な解が存在することを証明した。
また、より深い生成モデルにより効率的に推定できる分布のクラスを特徴付ける。
論文 参考訳(メタデータ) (2021-05-09T23:13:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。