論文の概要: Reliability of Event Timing in Silicon Neurons
- arxiv url: http://arxiv.org/abs/2112.14134v1
- Date: Tue, 28 Dec 2021 13:24:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-03 01:44:30.806873
- Title: Reliability of Event Timing in Silicon Neurons
- Title(参考訳): シリコンニューロンにおけるイベントタイミングの信頼性
- Authors: Tai Miyazaki Kirby, Luka Ribar, Rodolphe Sepulchre
- Abstract要約: ノイズと可変性は、アナログSiNにおける信頼できるスパイク伝達と共存可能であることを示す。
この性質を最近のバーストニューロンのニューロモルフィックモデルに説明する。
- 参考スコア(独自算出の注目度): 1.2891210250935146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Analog, low-voltage electronics show great promise in producing silicon
neurons (SiNs) with unprecedented levels of energy efficiency. Yet, their
inherently high susceptibility to process, voltage and temperature (PVT)
variations, and noise has long been recognised as a major bottleneck in
developing effective neuromorphic solutions. Inspired by spike transmission
studies in biophysical, neocortical neurons, we demonstrate that the inherent
noise and variability can coexist with reliable spike transmission in analog
SiNs, similarly to biological neurons. We illustrate this property on a recent
neuromorphic model of a bursting neuron by showcasing three different relevant
types of reliable event transmission: single spike transmission, burst
transmission, and the on-off control of a half-centre oscillator (HCO) network.
- Abstract(参考訳): アナログで低電圧の電子回路は、前例のないエネルギー効率でシリコンニューロン(SiN)を生産する大きな可能性を示している。
しかし、本質的にはプロセス、電圧および温度(pvt)の変動に対する感受性が高く、ノイズは効果的な神経形態的ソリューションを開発する上で大きなボトルネックと認識されてきた。
生体内・新皮質ニューロンにおけるスパイク伝達の研究に触発されて,固有ノイズと変動性は,生体ニューロンと同様にアナログシンにおける信頼性の高いスパイク伝達と共存できることを実証した。
本研究の目的は, 単一スパイク伝達, バースト伝達, 半中心発振器(HCO)ネットワークのオンオフ制御の3種類の信頼性のある事象伝達を示すことで, バーストニューロンの最近のニューロモルフィックモデルにこの特性を示すことである。
関連論文リスト
- Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
しきい値単位の動的代替として人工内蔵ニューロン(AKOrN)を導入する。
このアイデアは、幅広いタスクにまたがってパフォーマンス改善をもたらすことを示しています。
これらの経験的結果は、神経表現の最も基本的なレベルにおいて、私たちの仮定の重要性を示していると信じている。
論文 参考訳(メタデータ) (2024-10-17T17:47:54Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Asynchronous Bioplausible Neuron for SNN for Event Vision [1.7942265700058986]
Spiking Neural Networks (SNN) は、生物学的にインスパイアされたコンピュータビジョンのアプローチを提供する。
ABN(Asynchronous Bioplausible Neuron)は、入力信号の変動を自動的に調整する動的スパイク発火機構である。
様々なデータセットの包括的評価は、画像分類とセグメンテーションにおけるABNの強化された性能を示す。
論文 参考訳(メタデータ) (2023-11-20T15:45:16Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z) - Modeling Associative Plasticity between Synapses to Enhance Learning of
Spiking Neural Networks [4.736525128377909]
Spiking Neural Networks(SNN)は、ニューラルネットワークの第3世代であり、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする。
本稿では,シナプス間の結合可塑性をモデル化し,頑健で効果的な学習機構を提案する。
本手法は静的および最先端のニューロモルフィックデータセット上での優れた性能を実現する。
論文 参考訳(メタデータ) (2022-07-24T06:12:23Z) - A Coupled Neural Circuit Design for Guillain-Barre Syndrome [0.20999222360659603]
ギラン・バレー症候群(Guillain-Barre syndrome)は、ヒト免疫系が末梢神経系を攻撃する稀な神経疾患である。
本研究では,低コストでエネルギー効率の良いシステムのためのアナログおよびデジタル結合ニューロンモデルを提案する。
論文 参考訳(メタデータ) (2022-06-27T05:40:04Z) - STNDT: Modeling Neural Population Activity with a Spatiotemporal
Transformer [19.329190789275565]
我々は、個々のニューロンの応答を明示的にモデル化するNDTベースのアーキテクチャであるSpatioTemporal Neural Data Transformer (STNDT)を紹介する。
本モデルは,4つのニューラルデータセット間での神経活動の推定において,アンサンブルレベルでの最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2022-06-09T18:54:23Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Deep inference of latent dynamics with spatio-temporal super-resolution
using selective backpropagation through time [15.648009434801885]
現代の神経インタフェースは、脳回路内の100万のニューロンの活動をアクセスすることができる。
帯域幅制限はしばしば、より大きな空間サンプリング(より多くのチャンネルやピクセル)と時間サンプリングの頻度の間のトレードオフを生み出す。
ここでは、ニューロン間の関係を利用して、ニューロン時系列における超解像を得ることが可能であることを実証する。
論文 参考訳(メタデータ) (2021-10-29T20:18:29Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
本稿では,MPATH(Membrane Potential and Activation Threshold Homeostasis)ニューロンモデルを提案する。
このモデルにより、ニューロンは入力が提示されたときに自動的に活性を調節することで動的平衡の形式を維持することができる。
実験は、モデルがその入力から適応し、継続的に学習する能力を示す。
論文 参考訳(メタデータ) (2021-04-22T04:01:32Z) - Flexible Transmitter Network [84.90891046882213]
現在のニューラルネットワークはMPモデルに基づいて構築されており、通常はニューロンを他のニューロンから受信した信号の実際の重み付け集約上での活性化関数の実行として定式化する。
本稿では,フレキシブル・トランスミッタ(FT)モデルを提案する。
本稿では、最も一般的な完全接続型フィードフォワードアーキテクチャ上に構築された、フレキシブルトランスミッタネットワーク(FTNet)について述べる。
論文 参考訳(メタデータ) (2020-04-08T06:55:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。