論文の概要: Brain Tumor Classification by Cascaded Multiscale Multitask Learning
Framework Based on Feature Aggregation
- arxiv url: http://arxiv.org/abs/2112.14320v1
- Date: Tue, 28 Dec 2021 22:49:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-30 16:07:48.138354
- Title: Brain Tumor Classification by Cascaded Multiscale Multitask Learning
Framework Based on Feature Aggregation
- Title(参考訳): 特徴集合に基づくカスケード型マルチタスク学習フレームワークによる脳腫瘍の分類
- Authors: Zahra Sobhaninia, Nader Karimi, Pejman Khadivi, Shadrokh Samavi
- Abstract要約: MRI画像における脳腫瘍解析は、誤診が死につながる可能性があるため、重要かつ困難な問題である。
本稿では、MRI画像の強調と腫瘍領域の検出を含むフレームワークを用いて、MRI画像中の脳腫瘍を同時にセグメント化、分類するアプローチを提案する。
主観的および客観的な結果は,評価指標に基づくセグメンテーションと分類結果は,最先端技術に比較してよいか,あるいは同等であることを示している。
- 参考スコア(独自算出の注目度): 12.256043883052506
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Brain tumor analysis in MRI images is a significant and challenging issue
because misdiagnosis can lead to death. Diagnosis and evaluation of brain
tumors in the early stages increase the probability of successful treatment.
However, the complexity and variety of tumors, shapes, and locations make their
segmentation and classification complex. In this regard, numerous researchers
have proposed brain tumor segmentation and classification methods. This paper
presents an approach that simultaneously segments and classifies brain tumors
in MRI images using a framework that contains MRI image enhancement and tumor
region detection. Eventually, a network based on a multitask learning approach
is proposed. Subjective and objective results indicate that the segmentation
and classification results based on evaluation metrics are better or comparable
to the state-of-the-art.
- Abstract(参考訳): MRI画像における脳腫瘍解析は、誤診が死につながる可能性があるため、重要かつ困難な問題である。
脳腫瘍の早期診断と評価は、治療の成功の可能性を高める。
しかし、腫瘍、形状、位置の複雑さと多様性は、その区分と分類を複雑にする。
この観点から、多くの研究者が脳腫瘍の分類と分類法を提案している。
本稿では、MRI画像の強調と腫瘍領域の検出を含むフレームワークを用いて、MRI画像中の脳腫瘍を同時に分類する手法を提案する。
最終的に,マルチタスク学習手法に基づくネットワークを提案する。
主観的・客観的な結果から,評価指標に基づくセグメンテーションと分類の結果は,最先端と同等であった。
関連論文リスト
- Brain Tumor Classification From MRI Images Using Machine Learning [0.24739484546803336]
脳腫瘍は生命を脅かす問題であり、人間の身体の正常な機能を損なう。
医用画像におけるディープラーニングアルゴリズムの使用により、脳腫瘍の分類と診断が大幅に改善された。
本研究の目的は,機械学習を用いた脳腫瘍検出のための予測システムを開発することである。
論文 参考訳(メタデータ) (2024-07-15T11:30:40Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
磁気共鳴イメージング(MRI)のクロスモーダル増強と、同じ組織サンプルに基づく顕微鏡イメージングが期待できる。
コンディショナル・ジェネレーティブ・逆境ネットワーク (cGAN) アーキテクチャを用いて, コーパス・カロサムのMRI画像から顕微鏡組織像を生成する方法を検討した。
論文 参考訳(メタデータ) (2023-10-16T13:58:53Z) - Brain Tumor Segmentation from MRI Images using Deep Learning Techniques [3.1498833540989413]
パブリックMRIデータセットは、脳腫瘍、髄膜腫、グリオーマ、下垂体腫瘍の3つの変種を持つ233人の患者の3064 TI強調画像を含む。
データセットファイルは、よく知られた画像セグメンテーション深層学習モデルの実装とトレーニングを利用する方法論に順応する前に、変換され、前処理される。
実験の結果,Adamを用いた再帰的残差U-Netは平均差0.8665に到達し,他の最先端ディープラーニングモデルよりも優れていた。
論文 参考訳(メタデータ) (2023-04-29T13:33:21Z) - Brain tumor multi classification and segmentation in MRI images using
deep learning [3.1248717814228923]
この分類モデルはEfficientNetB1アーキテクチャに基づいており、画像は髄膜腫、グリオーマ、下垂体腺腫、腫瘍の4つのクラスに分類するよう訓練されている。
セグメンテーションモデルはU-Netアーキテクチャに基づいており、MRI画像から腫瘍を正確にセグメンテーションするように訓練されている。
論文 参考訳(メタデータ) (2023-04-20T01:32:55Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
本稿では,脳腫瘍の深層埋め込みを直接学習する手法を提案する。
本手法は,27種類の腫瘍群からなる広範囲な脳腫瘍データセットを用いて評価し,そのうち13種は稀である。
論文 参考訳(メタデータ) (2021-08-08T11:26:34Z) - MAG-Net: Mutli-task attention guided network for brain tumor
segmentation and classification [0.9176056742068814]
本稿では,MRI画像を用いて脳腫瘍領域の分類と分類を行うマルチタスク注意誘導エンコーダネットワーク(MAG-Net)を提案する。
このモデルは既存の最先端モデルと比較して有望な結果を得た。
論文 参考訳(メタデータ) (2021-07-26T16:51:00Z) - Scale-Space Autoencoders for Unsupervised Anomaly Segmentation in Brain
MRI [47.26574993639482]
本研究では, 異常セグメンテーション性能の向上と, ネイティブ解像度で入力データのより鮮明な再構成を行う汎用能力を示す。
ラプラシアンピラミッドのモデリングにより、複数のスケールで病変のデライン化と集約が可能になる。
論文 参考訳(メタデータ) (2020-06-23T09:20:42Z) - Region of Interest Identification for Brain Tumors in Magnetic Resonance
Images [8.75217589103206]
そこで我々は,腫瘍周辺で最小の境界ボックスを見つけるために,軽量計算量で高速かつ自動化された手法を提案する。
この領域は、サブリージョン腫瘍セグメンテーションのトレーニングネットワークにおける前処理ステップとして使用できる。
提案手法は BraTS 2015 データセット上で評価され,得られた平均 DICE スコアは 0.73 である。
論文 参考訳(メタデータ) (2020-02-26T14:10:40Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。