The role of tunneling in the ionization of atoms by ultrashort and
intense laser pulses
- URL: http://arxiv.org/abs/2112.14336v2
- Date: Fri, 28 Jan 2022 10:59:09 GMT
- Title: The role of tunneling in the ionization of atoms by ultrashort and
intense laser pulses
- Authors: Gabriel M. Lando
- Abstract summary: Transport is shown to compete with quantum tunneling during the ionization of atoms by ultrashort and intense laser pulses.
Not only is classical transport capable of moving trajectories away from the core, but it can also furnish ionization probabilities of the same order as the quantum ones for intensities currently employed in experiments.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classically allowed transport is shown to compete with quantum tunneling
during the ionization of atoms by ultrashort and intense laser pulses, despite
Keldysh parameters smaller than unity. This is done by comparing exact
probability densities with the ones obtained from purely classical propagation
using the Truncated Wigner Approximation. Not only is classical transport
capable of moving trajectories away from the core, but it can also furnish
ionization probabilities of the same order as the quantum ones for intensities
currently employed in experiments. Our results have implications ranging from a
conceptual correction to semiclassical step models in strong-field physics to
the ongoing debate about tunneling time measurements in attoclock experiments.
Related papers
- Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Quantum tunneling and level crossings in the squeeze-driven Kerr
oscillator [0.0]
We analyze the spectrum and the dynamics of the effective model up to high energies.
We argue that the level crossings and their consequences to the dynamics are typical to any quantum system with one degree of freedom.
arXiv Detail & Related papers (2023-05-17T18:00:05Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Phase Randomness in a Semiconductor Laser: the Issue of Quantum Random
Number Generation [83.48996461770017]
This paper describes theoretical and experimental methods for estimating the degree of phase randomization in a gain-switched laser.
We show that the interference signal remains quantum in nature even in the presence of classical phase drift in the interferometer.
arXiv Detail & Related papers (2022-09-20T14:07:39Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Quantum interference in strong-field ionization by a linearly polarized
laser pulse, and its relevance to tunnel exit time and momentum [0.0]
We investigate the liberation of an atomic electron by a linearly polarized single-cycle near-infrared laser pulse having a peak intensity that ensures tunneling.
Based on phase space analysis and energy distribution in the instantaneous potential, we reveal the importance of quantum interference between tunneling and over-the-barrier pathways of escape.
arXiv Detail & Related papers (2021-03-23T17:20:59Z) - Photon-instanton collider implemented by a superconducting circuit [0.0]
We show how galvanic coupling of a transmon qubit to a high-impedance transmission line allows the observation of inelastic collisions of single microwave photons with instantons.
We develop a formalism for calculating the photon-instanton cross section, which should be useful in other quantum field theoretical contexts.
arXiv Detail & Related papers (2020-10-06T11:23:12Z) - Dynamical tunnelling of a Nano-mechanical Oscillator [0.0]
We show that tunnelling rates sensitively depend on the ability of the quantum system to resolve the underlying classical phase space.
We show that the effective Planck's constant, which determines this phase space resolution, can be varied over orders of magnitude.
We demonstrate that a mixed regular and chaotic phase space can be engineered in one spatial dimension.
arXiv Detail & Related papers (2020-06-25T15:21:58Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z) - Effective quantum tunneling from semiclassical momentous approach [0.0]
We study the quantum tunnel effect through a potential barrier employing a semiclassical formulation of quantum mechanics.
The evolution of the system is given in terms of a dynamical system for which we are able to determine effective trajectories for individual particles.
arXiv Detail & Related papers (2020-03-31T21:17:50Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.