Dynamical tunnelling of a Nano-mechanical Oscillator
- URL: http://arxiv.org/abs/2006.14475v1
- Date: Thu, 25 Jun 2020 15:21:58 GMT
- Title: Dynamical tunnelling of a Nano-mechanical Oscillator
- Authors: Piyush Jangid, Anil Kumar Chauhan and Sebastian W\"uster
- Abstract summary: We show that tunnelling rates sensitively depend on the ability of the quantum system to resolve the underlying classical phase space.
We show that the effective Planck's constant, which determines this phase space resolution, can be varied over orders of magnitude.
We demonstrate that a mixed regular and chaotic phase space can be engineered in one spatial dimension.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The study of the quantum to classical transition is of fundamental as well as
technological importance, and focusses on mesoscopic devices, with a size for
which either classical physics or quantum physics can be brought to dominate. A
particularly diverse selection of such devices is available in cavity
quantum-optomechanics. We show that these can be leveraged for the study of
dynamical-tunnelling in a quantum chaotic system. This effect probes the
quantum to classical transition deeply, since tunnelling rates sensitively
depend on the ability of the quantum system to resolve the underlying classical
phase space. We show that the effective Planck's constant, which determines
this phase space resolution, can be varied over orders of magnitude as a
function of tunable parameters in an opto-mechanical experiment. Specifically,
we consider a membrane-in-the-middle configuration of a mechanical oscillator
within an optical cavity, where the intracavity field is modulated periodically
by the external laser source. We demonstrate that a mixed regular and chaotic
phase space can be engineered in one spatial dimension, through a significant
quartic opto-mechanical interaction. For that case, we explore the expected
dynamical tunnelling rates using Floquet theory and map out values of the
effective Planck's constant that should be within practical reach.
Related papers
- Quantum sensing in Kerr parametric oscillators [0.0]
We show how the analysis of the phase space structure of the classical limit of Kerr parametric oscillators can be used for determining control parameters.
We also explore how quantum sensing can benefit from excited-state quantum phase transitions, even in the absence of a conventional quantum phase transition.
arXiv Detail & Related papers (2024-07-19T18:00:00Z) - Macroscopic quantum entanglement between an optomechanical cavity and a
continuous field in presence of non-Markovian noise [10.363406065066538]
We develop a framework to quantify the amount of entanglement in the system numerically.
We apply our framework to the case of the Advanced Laser Interferometer Gravitational-Wave Observatory.
arXiv Detail & Related papers (2023-09-21T23:10:29Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Exploring quantum correlations in a hybrid optomechanical system [0.0]
We propose a scheme of two coupled optomechanical cavities to enhance the intracavity entanglement.
Photon hopping is employed to establish couplings between optical modes, while phonon is utilized to establish couplings between mechanical tunneling resonators.
arXiv Detail & Related papers (2022-04-16T08:47:50Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Parity measurement in the strong dispersive regime of circuit quantum
acoustodynamics [1.7673364730995766]
We show direct measurements of the phonon number distribution and parity of nonclassical mechanical states.
These measurements are some of the basic building blocks for constructing acoustic quantum memories and processors.
Our results open the door to performing even more complex quantum algorithms using mechanical systems.
arXiv Detail & Related papers (2021-10-01T08:40:26Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum gravitational decoherence from fluctuating minimal length and
deformation parameter at the Planck scale [0.0]
We introduce a decoherence process due to quantum gravity effects.
We find that the decoherence rate predicted by our model is extremal, being minimal in the deep quantum regime below the Planck scale and maximal in the mesoscopic regime beyond it.
arXiv Detail & Related papers (2020-11-02T19:01:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.