Data-Driven Computational Methods for the Domain of Attraction and
Zubov's Equation
- URL: http://arxiv.org/abs/2112.14415v1
- Date: Wed, 29 Dec 2021 06:41:34 GMT
- Title: Data-Driven Computational Methods for the Domain of Attraction and
Zubov's Equation
- Authors: Wei Kang, Kai Sun, Liang Xu
- Abstract summary: This paper deals with a special type of Lyapunov functions, namely the solution of Zubov's equation.
We derive and prove an integral form solution to Zubov's equation.
- Score: 8.70492400538407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper deals with a special type of Lyapunov functions, namely the
solution of Zubov's equation. Such a function can be used to characterize the
domain of attraction for systems of ordinary differential equations. We derive
and prove an integral form solution to Zubov's equation. For numerical
computation, we develop two data-driven methods. One is based on the
integration of an augmented system of differential equations; and the other one
is based on deep learning. The former is effective for systems with a
relatively low state space dimension and the latter is developed for high
dimensional problems. The deep learning method is applied to a New England
10-generator power system model. We prove that a neural network approximation
exists for the Lyapunov function of power systems such that the approximation
error is a cubic polynomial of the number of generators. The error convergence
rate as a function of n, the number of neurons, is proved.
Related papers
- Solving Time-Fractional Partial Integro-Differential Equations Using Tensor Neural Network [0.0]
We propose a novel machine learning method based on adaptive tensor neural network subspace to solve linear time-fractional diffusion-wave equations.
Some numerical examples are provided to validate the efficiency and accuracy of the proposed tensor neural network based machine learning method.
arXiv Detail & Related papers (2025-04-02T07:50:23Z) - Score-based Neural Ordinary Differential Equations for Computing Mean Field Control Problems [13.285775352653546]
This paper proposes a system of neural differential equations representing first- and second-order score functions along trajectories based on deep neural networks.
We reformulate the mean viscous field control (MFC) problem with individual noises into an unconstrained optimization problem framed by the proposed neural ODE system.
arXiv Detail & Related papers (2024-09-24T21:45:55Z) - A Physics-Informed Machine Learning Approach for Solving Distributed Order Fractional Differential Equations [0.0]
This paper introduces a novel methodology for solving distributed-order fractional differential equations using a physics-informed machine learning framework.
By embedding the distributed-order functional equation into the SVR framework, we incorporate physical laws directly into the learning process.
The effectiveness of the proposed approach is validated through a series of numerical experiments on Caputo-based distributed-order fractional differential equations.
arXiv Detail & Related papers (2024-09-05T13:20:10Z) - MultiSTOP: Solving Functional Equations with Reinforcement Learning [56.073581097785016]
We develop MultiSTOP, a Reinforcement Learning framework for solving functional equations in physics.
This new methodology produces actual numerical solutions instead of bounds on them.
arXiv Detail & Related papers (2024-04-23T10:51:31Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
Symbolic recovery of differential equations is the ambitious attempt at automating the derivation of governing equations.
We provide both necessary and sufficient conditions for a function to uniquely determine the corresponding differential equation.
We then use our results to devise numerical algorithms aiming to determine whether a function solves a differential equation uniquely.
arXiv Detail & Related papers (2022-10-15T17:32:49Z) - D-CIPHER: Discovery of Closed-form Partial Differential Equations [80.46395274587098]
We propose D-CIPHER, which is robust to measurement artifacts and can uncover a new and very general class of differential equations.
We further design a novel optimization procedure, CoLLie, to help D-CIPHER search through this class efficiently.
arXiv Detail & Related papers (2022-06-21T17:59:20Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
We propose a unified framework for learning diverse classes of differential equations (DEs) including all the aforementioned ones.
Instead of modelling the dynamics in the time domain, we model it in the Laplace domain, where the history-dependencies and discontinuities in time can be represented as summations of complex exponentials.
In the experiments, Neural Laplace shows superior performance in modelling and extrapolating the trajectories of diverse classes of DEs.
arXiv Detail & Related papers (2022-06-10T02:14:59Z) - Multiwavelet-based Operator Learning for Differential Equations [3.0824316066680484]
We introduce a textitmultiwavelet-based neural operator learning scheme that compresses the associated operator's kernel.
By explicitly embedding the inverse multiwavelet filters, we learn the projection of the kernel onto fixed multiwavelet bases.
Compared with the existing neural operator approaches, our model shows significantly higher accuracy and state-of-the-art in a range of datasets.
arXiv Detail & Related papers (2021-09-28T03:21:47Z) - Deep neural network for solving differential equations motivated by
Legendre-Galerkin approximation [16.64525769134209]
We explore the performance and accuracy of various neural architectures on both linear and nonlinear differential equations.
We implement a novel Legendre-Galerkin Deep Neural Network (LGNet) algorithm to predict solutions to differential equations.
arXiv Detail & Related papers (2020-10-24T20:25:09Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
We formulate a new neural operator by parameterizing the integral kernel directly in Fourier space.
We perform experiments on Burgers' equation, Darcy flow, and Navier-Stokes equation.
It is up to three orders of magnitude faster compared to traditional PDE solvers.
arXiv Detail & Related papers (2020-10-18T00:34:21Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.