論文の概要: A Comparative Study of Machine Learning Models Predicting Energetics of Interacting Defects
- arxiv url: http://arxiv.org/abs/2403.13243v1
- Date: Wed, 20 Mar 2024 02:15:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 18:17:45.262915
- Title: A Comparative Study of Machine Learning Models Predicting Energetics of Interacting Defects
- Title(参考訳): 相互作用欠陥のエネルギーを予測する機械学習モデルの比較研究
- Authors: Hao Yu,
- Abstract要約: 本稿では,相互作用する欠陥のあるシステムの自由エネルギー変化を予測する3つの方法の比較研究を行う。
その結果,この限られたデータセットであっても,クラスタ展開モデルによって正確なエネルギー予測が達成できることが示唆された。
本研究では,不完全な表面システムに機械学習を適用した予備評価を行う。
- 参考スコア(独自算出の注目度): 5.574191640970887
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interacting defect systems are ubiquitous in materials under realistic scenarios, yet gaining an atomic-level understanding of these systems from a computational perspective is challenging - it often demands substantial resources due to the necessity of employing supercell calculations. While machine learning techniques have shown potential in accelerating materials simulations, their application to systems involving interacting defects remains relatively rare. In this work, we present a comparative study of three different methods to predict the free energy change of systems with interacting defects. We leveraging a limited dataset from Density Functional Theory(DFT) calculations to assess the performance models using materials descriptors, graph neural networks and cluster expansion. Our findings indicate that the cluster expansion model can achieve precise energetics predictions even with this limited dataset. Furthermore, with synthetic data generate from cluster expansion model at near-DFT levels, we obtained enlarged dataset to assess the demands on data for training accurate prediction models using graph neural networks for systems featuring interacting defects. A brief discussion of the computational cost for each method is provided at the end. This research provide a preliminary evaluation of applying machine learning techniques in imperfect surface systems.
- Abstract(参考訳): 相互作用する欠陥システムは現実的なシナリオの下ではどこにでも存在するが、計算の観点からこれらのシステムの原子レベルでの理解を得ることは困難である。
機械学習技術は材料シミュレーションを加速させる可能性を示しているが、相互作用する欠陥を含むシステムへの応用は比較的稀である。
本研究では, 相互作用欠陥を伴う系の自由エネルギー変化を予測する3つの方法の比較研究を行った。
我々は、密度汎関数理論(DFT)計算からの限られたデータセットを活用し、材料記述子、グラフニューラルネットワーク、クラスタ展開を用いて性能モデルを評価する。
その結果,この限られたデータセットであっても,クラスタ展開モデルによって正確なエネルギー予測が達成できることが示唆された。
さらに,クラスタ拡張モデルからほぼDFTレベルの合成データを生成することにより,相互作用欠陥を特徴とするシステムのためのグラフニューラルネットワークを用いて,正確な予測モデルのトレーニングを行うためのデータの要求量を評価するために,拡張データセットを得た。
最後に各手法の計算コストについて簡単な議論を行う。
本研究では,不完全な表面システムに機械学習を適用した予備評価を行う。
関連論文リスト
- CGNSDE: Conditional Gaussian Neural Stochastic Differential Equation for Modeling Complex Systems and Data Assimilation [1.4322470793889193]
条件付きニューラル微分方程式(CGNSDE)と呼ばれる新しい知識ベースおよび機械学習ハイブリッドモデリング手法を開発した。
標準的なニューラルネットワーク予測モデルとは対照的に、CGNSDEは前方予測タスクと逆状態推定問題の両方に効果的に取り組むように設計されている。
論文 参考訳(メタデータ) (2024-04-10T05:32:03Z) - CoDBench: A Critical Evaluation of Data-driven Models for Continuous
Dynamical Systems [8.410938527671341]
微分方程式を解くための11の最先端データ駆動モデルからなる総合ベンチマークスイートであるCodBenchを紹介する。
具体的には、Viz.、フィードフォワードニューラルネットワーク、ディープオペレータ回帰モデル、周波数ベースのニューラル演算子、トランスフォーマーアーキテクチャの4つの異なるカテゴリを評価する。
我々は、学習におけるオペレータの能力、ゼロショット超解像、データ効率、ノイズに対する堅牢性、計算効率を評価する広範な実験を行う。
論文 参考訳(メタデータ) (2023-10-02T21:27:54Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
調査は、センサーの故障やノイズなど、様々な摂動を扱うモデルの能力に焦点を当てている。
我々は,これらのモデルの一般化と伝達学習能力を,アウト・オブ・ディストリビューション(OOD)サンプルに公開することによって検証する。
論文 参考訳(メタデータ) (2023-06-13T12:43:59Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
マルチ物理問題における機械学習ツールの効果的な利用の鍵は、それらを物理モデルとコンピュータモデルに結合することである。
本章では, 燃焼システムにおけるデータ駆動型低次モデリングの適用可能性について概説する。
論文 参考訳(メタデータ) (2022-09-05T16:48:34Z) - A transfer learning enhanced the physics-informed neural network model
for vortex-induced vibration [0.0]
本稿では、VIV(2D)を研究するために、物理インフォームドニューラルネットワーク(PINN)モデルを用いたトランスファーラーニングを提案する。
物理インフォームドニューラルネットワークは、転送学習法と併用することにより、学習効率を高め、大量のデータセットを必要とせずに、ソースモデルからの共通特性知識による目標タスクの予測可能性を維持する。
論文 参考訳(メタデータ) (2021-12-29T08:20:23Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。