Implementation of Convolutional Neural Network Architecture on 3D
Multiparametric Magnetic Resonance Imaging for Prostate Cancer Diagnosis
- URL: http://arxiv.org/abs/2112.14644v1
- Date: Wed, 29 Dec 2021 16:47:52 GMT
- Title: Implementation of Convolutional Neural Network Architecture on 3D
Multiparametric Magnetic Resonance Imaging for Prostate Cancer Diagnosis
- Authors: Ping-Chang Lin, Teodora Szasz, and Hakizumwami B. Runesha
- Abstract summary: We propose a novel deep learning approach for automatic classification of prostate lesions in magnetic resonance images.
Our framework achieved the classification performance with the area under a Receiver Operating Characteristic curve value of 0.87.
Our proposed framework reflects the potential of assisting medical image interpretation in prostate cancer and reducing unnecessary biopsies.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prostate cancer is one of the most common causes of cancer deaths in men.
There is a growing demand for noninvasively and accurately diagnostic methods
that facilitate the current standard prostate cancer risk assessment in
clinical practice. Still, developing computer-aided classification tools in
prostate cancer diagnostics from multiparametric magnetic resonance images
continues to be a challenge. In this work, we propose a novel deep learning
approach for automatic classification of prostate lesions in the corresponding
magnetic resonance images by constructing a two-stage multimodal multi-stream
convolutional neural network (CNN)-based architecture framework. Without
implementing sophisticated image preprocessing steps or third-party software,
our framework achieved the classification performance with the area under a
Receiver Operating Characteristic (ROC) curve value of 0.87. The result
outperformed most of the submitted methods and shared the highest value
reported by the PROSTATEx Challenge organizer. Our proposed CNN-based framework
reflects the potential of assisting medical image interpretation in prostate
cancer and reducing unnecessary biopsies.
Related papers
- Enhancing Trust in Clinically Significant Prostate Cancer Prediction with Multiple Magnetic Resonance Imaging Modalities [61.36288157482697]
In the United States, prostate cancer is the second leading cause of deaths in males with a predicted 35,250 deaths in 2024.
In this paper, we investigate combining multiple MRI modalities to train a deep learning model to enhance trust in the models for clinically significant prostate cancer prediction.
arXiv Detail & Related papers (2024-11-07T12:48:27Z) - Towards Multi-modality Fusion and Prototype-based Feature Refinement for Clinically Significant Prostate Cancer Classification in Transrectal Ultrasound [4.662744612095781]
We propose a novel learning framework for clinically significant prostate cancer (csPCa) classification using multi-modality TRUS.
The proposed framework employs two separate 3D ResNet-50 to extract distinctive features from B-mode and shear wave elastography (SWE)
The performance of the framework is assessed on a large-scale dataset consisting of 512 TRUS videos with biopsy-proved prostate cancer.
arXiv Detail & Related papers (2024-06-20T07:45:01Z) - Radiomics-guided Multimodal Self-attention Network for Predicting Pathological Complete Response in Breast MRI [3.6852491526879687]
This study presents a model that predicts pCR in breast cancer patients using dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and apparent diffusion coefficient (ADC) maps.
Our approach extracts features from both DCE MRI and ADC using an encoder with a self-attention mechanism, leveraging radiomics to guide feature extraction from tumor-related regions.
arXiv Detail & Related papers (2024-06-05T04:49:55Z) - Convolutional neural network classification of cancer cytopathology images: taking breast cancer as an example [40.3927727959038]
This paper introduces an approach utilizing convolutional neural networks (CNNs) for the rapid categorization of pathological images.
It enables the rapid and automatic classification of pathological images into benign and malignant groups.
It demonstrates that the proposed method effectively enhances the accuracy in classifying pathological images of breast cancer.
arXiv Detail & Related papers (2024-04-12T07:08:05Z) - Multi-modality transrectal ultrasound video classification for
identification of clinically significant prostate cancer [4.896561300855359]
We propose a framework for the classification of clinically significant prostate cancer (csPCa) from multi-modality TRUS videos.
The proposed framework is evaluated on an in-house dataset containing 512 TRUS videos.
arXiv Detail & Related papers (2024-02-14T07:06:30Z) - Cancer-Net PCa-Gen: Synthesis of Realistic Prostate Diffusion Weighted
Imaging Data via Anatomic-Conditional Controlled Latent Diffusion [68.45407109385306]
In Canada, prostate cancer is the most common form of cancer in men and accounted for 20% of new cancer cases for this demographic in 2022.
There has been significant interest in the development of deep neural networks for prostate cancer diagnosis, prognosis, and treatment planning using diffusion weighted imaging (DWI) data.
In this study, we explore the efficacy of latent diffusion for generating realistic prostate DWI data through the introduction of an anatomic-conditional controlled latent diffusion strategy.
arXiv Detail & Related papers (2023-11-30T15:11:03Z) - Intelligent Breast Cancer Diagnosis with Heuristic-assisted
Trans-Res-U-Net and Multiscale DenseNet using Mammogram Images [0.0]
Breast cancer (BC) significantly contributes to cancer-related mortality in women.
accurately distinguishing malignant mass lesions remains challenging.
We propose a novel deep learning approach for BC screening utilizing mammography images.
arXiv Detail & Related papers (2023-10-30T10:22:14Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Learned super resolution ultrasound for improved breast lesion
characterization [52.77024349608834]
Super resolution ultrasound localization microscopy enables imaging of the microvasculature at the capillary level.
In this work we use a deep neural network architecture that makes effective use of signal structure to address these challenges.
By leveraging our trained network, the microvasculature structure is recovered in a short time, without prior PSF knowledge, and without requiring separability of the UCAs.
arXiv Detail & Related papers (2021-07-12T09:04:20Z) - Gleason Grading of Histology Prostate Images through Semantic
Segmentation via Residual U-Net [60.145440290349796]
The final diagnosis of prostate cancer is based on the visual detection of Gleason patterns in prostate biopsy by pathologists.
Computer-aided-diagnosis systems allow to delineate and classify the cancerous patterns in the tissue.
The methodological core of this work is a U-Net convolutional neural network for image segmentation modified with residual blocks able to segment cancerous tissue.
arXiv Detail & Related papers (2020-05-22T19:49:10Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.