Towards Multi-modality Fusion and Prototype-based Feature Refinement for Clinically Significant Prostate Cancer Classification in Transrectal Ultrasound
- URL: http://arxiv.org/abs/2406.14069v1
- Date: Thu, 20 Jun 2024 07:45:01 GMT
- Title: Towards Multi-modality Fusion and Prototype-based Feature Refinement for Clinically Significant Prostate Cancer Classification in Transrectal Ultrasound
- Authors: Hong Wu, Juan Fu, Hongsheng Ye, Yuming Zhong, Xuebin Zou, Jianhua Zhou, Yi Wang,
- Abstract summary: We propose a novel learning framework for clinically significant prostate cancer (csPCa) classification using multi-modality TRUS.
The proposed framework employs two separate 3D ResNet-50 to extract distinctive features from B-mode and shear wave elastography (SWE)
The performance of the framework is assessed on a large-scale dataset consisting of 512 TRUS videos with biopsy-proved prostate cancer.
- Score: 4.662744612095781
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prostate cancer is a highly prevalent cancer and ranks as the second leading cause of cancer-related deaths in men globally. Recently, the utilization of multi-modality transrectal ultrasound (TRUS) has gained significant traction as a valuable technique for guiding prostate biopsies. In this study, we propose a novel learning framework for clinically significant prostate cancer (csPCa) classification using multi-modality TRUS. The proposed framework employs two separate 3D ResNet-50 to extract distinctive features from B-mode and shear wave elastography (SWE). Additionally, an attention module is incorporated to effectively refine B-mode features and aggregate the extracted features from both modalities. Furthermore, we utilize few shot segmentation task to enhance the capacity of classification encoder. Due to the limited availability of csPCa masks, a prototype correction module is employed to extract representative prototypes of csPCa. The performance of the framework is assessed on a large-scale dataset consisting of 512 TRUS videos with biopsy-proved prostate cancer. The results demonstrate the strong capability in accurately identifying csPCa, achieving an area under the curve (AUC) of 0.86. Moreover, the framework generates visual class activation mapping (CAM), which can serve as valuable assistance for localizing csPCa. These CAM images may offer valuable guidance during TRUS-guided targeted biopsies, enhancing the efficacy of the biopsy procedure.The code is available at https://github.com/2313595986/SmileCode.
Related papers
- ASPS: Augmented Segment Anything Model for Polyp Segmentation [77.25557224490075]
The Segment Anything Model (SAM) has introduced unprecedented potential for polyp segmentation.
SAM's Transformer-based structure prioritizes global and low-frequency information.
CFA integrates a trainable CNN encoder branch with a frozen ViT encoder, enabling the integration of domain-specific knowledge.
arXiv Detail & Related papers (2024-06-30T14:55:32Z) - Optimizing Synthetic Correlated Diffusion Imaging for Breast Cancer Tumour Delineation [71.91773485443125]
We show that the best AUC is achieved by the CDI$s$ - optimized modality, outperforming the best gold-standard modality by 0.0044.
Notably, the optimized CDI$s$ modality also achieves AUC values over 0.02 higher than the Unoptimized CDI$s$ value.
arXiv Detail & Related papers (2024-05-13T16:07:58Z) - Multi-modality transrectal ultrasound video classification for
identification of clinically significant prostate cancer [4.896561300855359]
We propose a framework for the classification of clinically significant prostate cancer (csPCa) from multi-modality TRUS videos.
The proposed framework is evaluated on an in-house dataset containing 512 TRUS videos.
arXiv Detail & Related papers (2024-02-14T07:06:30Z) - Enhancing Prostate Cancer Diagnosis with Deep Learning: A Study using
mpMRI Segmentation and Classification [0.0]
Prostate cancer (PCa) is a severe disease among men globally. It is important to identify PCa early and make a precise diagnosis for effective treatment.
Deep learning (DL) models can enhance existing clinical systems and improve patient care by locating regions of interest for physicians.
This work uses well-known DL models for the classification and segmentation of mpMRI images to detect PCa.
arXiv Detail & Related papers (2023-10-09T03:00:15Z) - Implementation of Convolutional Neural Network Architecture on 3D
Multiparametric Magnetic Resonance Imaging for Prostate Cancer Diagnosis [0.0]
We propose a novel deep learning approach for automatic classification of prostate lesions in magnetic resonance images.
Our framework achieved the classification performance with the area under a Receiver Operating Characteristic curve value of 0.87.
Our proposed framework reflects the potential of assisting medical image interpretation in prostate cancer and reducing unnecessary biopsies.
arXiv Detail & Related papers (2021-12-29T16:47:52Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - RCA-IUnet: A residual cross-spatial attention guided inception U-Net
model for tumor segmentation in breast ultrasound imaging [0.6091702876917281]
The article introduces an efficient residual cross-spatial attention guided inception U-Net (RCA-IUnet) model with minimal training parameters for tumor segmentation.
The RCA-IUnet model follows U-Net topology with residual inception depth-wise separable convolution and hybrid pooling layers.
Cross-spatial attention filters are added to suppress the irrelevant features and focus on the target structure.
arXiv Detail & Related papers (2021-08-05T10:35:06Z) - Learned super resolution ultrasound for improved breast lesion
characterization [52.77024349608834]
Super resolution ultrasound localization microscopy enables imaging of the microvasculature at the capillary level.
In this work we use a deep neural network architecture that makes effective use of signal structure to address these challenges.
By leveraging our trained network, the microvasculature structure is recovered in a short time, without prior PSF knowledge, and without requiring separability of the UCAs.
arXiv Detail & Related papers (2021-07-12T09:04:20Z) - Detecting Pancreatic Ductal Adenocarcinoma in Multi-phase CT Scans via
Alignment Ensemble [77.5625174267105]
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers among the population.
Multiple phases provide more information than single phase, but they are unaligned and inhomogeneous in texture.
We suggest an ensemble of all these alignments as a promising way to boost the performance of PDAC detection.
arXiv Detail & Related papers (2020-03-18T19:06:27Z) - A Novel and Efficient Tumor Detection Framework for Pancreatic Cancer
via CT Images [21.627818410241552]
A novel and efficient pancreatic tumor detection framework is proposed in this paper.
The contribution of the proposed method mainly consists of three components: Augmented Feature Pyramid networks, Self-adaptive Feature Fusion and a Dependencies Computation Module.
Experimental results achieve competitive performance in detection with the AUC of 0.9455, which outperforms other state-of-the-art methods to our best of knowledge.
arXiv Detail & Related papers (2020-02-11T15:48:22Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.