論文の概要: Contrastive Fine-grained Class Clustering via Generative Adversarial
Networks
- arxiv url: http://arxiv.org/abs/2112.14971v1
- Date: Thu, 30 Dec 2021 08:57:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-03 14:47:32.314386
- Title: Contrastive Fine-grained Class Clustering via Generative Adversarial
Networks
- Title(参考訳): 生成逆ネットワークによる対照的なきめ細かいクラスクラスタリング
- Authors: Yunji Kim, Jung-Woo Ha
- Abstract要約: コントラスト学習を適用することでInfoGANのカテゴリ推論能力を活用する手法であるC3-GANを紹介する。
C3-GANは4つのきめ細かいベンチマークデータセットで最先端のクラスタリング性能を達成した。
- 参考スコア(独自算出の注目度): 9.667133604169829
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised fine-grained class clustering is practical yet challenging task
due to the difficulty of feature representations learning of subtle object
details. We introduce C3-GAN, a method that leverages the categorical inference
power of InfoGAN by applying contrastive learning. We aim to learn feature
representations that encourage the data to form distinct cluster boundaries in
the embedding space, while also maximizing the mutual information between the
latent code and its observation. Our approach is to train the discriminator,
which is used for inferring clusters, to optimize the contrastive loss, where
the image-latent pairs that maximize the mutual information are considered as
positive pairs and the rest as negative pairs. Specifically, we map the input
of the generator, which has sampled from the categorical distribution, to the
embedding space of the discriminator and let them act as a cluster centroid. In
this way, C3-GAN achieved to learn a clustering-friendly embedding space where
each cluster is distinctively separable. Experimental results show that C3-GAN
achieved state-of-the-art clustering performance on four fine-grained benchmark
datasets, while also alleviating the mode collapse phenomenon.
- Abstract(参考訳): 教師なしのきめ細かいクラスクラスタリングは、微妙なオブジェクトの詳細に関する特徴表現の学習が困難であるため、実際は難しい課題である。
コントラスト学習を適用することでInfoGANのカテゴリ推論能力を活用する手法であるC3-GANを紹介する。
我々は,データの埋め込み空間におけるクラスタ境界形成を促す特徴表現の学習と,潜在コードと観測データとの相互情報の最大化を目指す。
我々のアプローチは、クラスタを推定するために使用される判別器を訓練し、相互情報を最大化する画像相対対を正の対とし、残りを負のペアとするコントラスト損失を最適化する。
具体的には、分類分布からサンプリングしたジェネレータの入力を判別器の埋め込み空間にマッピングし、クラスタセントロイドとして機能させる。
このようにして、C3-GANは、各クラスタが明確に分離可能なクラスタリングフレンドリーな埋め込み空間を学習することに成功した。
実験結果から,C3-GANは4つの詳細なベンチマークデータセット上での最先端クラスタリング性能を達成し,モード崩壊現象を緩和した。
関連論文リスト
- A3S: A General Active Clustering Method with Pairwise Constraints [66.74627463101837]
A3Sは、適応クラスタリングアルゴリズムによって得られる初期クラスタ結果に対して、戦略的にアクティブクラスタリングを調整する。
さまざまな実世界のデータセットにわたる広範な実験において、A3Sは、人間のクエリを著しく少なくして、望ましい結果を達成する。
論文 参考訳(メタデータ) (2024-07-14T13:37:03Z) - Stable Cluster Discrimination for Deep Clustering [7.175082696240088]
ディープクラスタリングは、インスタンスの表現(つまり、表現学習)を最適化し、固有のデータ分散を探索することができる。
結合された目的は、すべてのインスタンスが一様機能に崩壊する、自明な解決策を意味する。
本研究では,1段階クラスタリングにおいて,教師あり学習における一般的な識別タスクが不安定であることを示す。
新規な安定クラスタ識別(SeCu)タスクを提案し、それに応じて新しいハードネス対応クラスタリング基準を得ることができる。
論文 参考訳(メタデータ) (2023-11-24T06:43:26Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - Using Decision Trees for Interpretable Supervised Clustering [0.0]
教師付きクラスタリングは、高い確率密度でラベル付きデータのクラスタを形成することを目的としている。
特に、特定のクラスのデータのクラスタを見つけ、包括的なルールのセットでクラスタを記述することに興味があります。
論文 参考訳(メタデータ) (2023-07-16T17:12:45Z) - Oracle-guided Contrastive Clustering [28.066047266687058]
Oracle-Guided Contrastive Clustering(OCC)は,ユニークな要求を持ったオーラクルに対して,ペアワイズで同クラスタ"クエリを対話的に作成することで,クラスタリングを実現する。
私たちの知る限りでは、パーソナライズされたクラスタリングを実行する最初のディープフレームワークです。
論文 参考訳(メタデータ) (2022-11-01T12:05:12Z) - Self-Evolutionary Clustering [1.662966122370634]
既存のディープクラスタリング手法の多くは、単純な距離比較に基づいており、手作り非線形マッピングによって生成されたターゲット分布に大きく依存している。
新たなモジュール型自己進化クラスタリング(Self-EvoC)フレームワークが構築され,自己管理的な分類によってクラスタリング性能が向上する。
このフレームワークは、サンプルアウトレイラを効率よく識別し、自己監督の助けを借りて、より良い目標分布を生成することができる。
論文 参考訳(メタデータ) (2022-02-21T19:38:18Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
我々は,自己教師型コントラストグラフクラスタリング(SCAGC)という,新たな属性グラフクラスタリングネットワークを提案する。
SCAGCでは,不正確なクラスタリングラベルを活用することで,ノード表現学習のための自己教師付きコントラスト損失を設計する。
OOSノードでは、SCAGCはクラスタリングラベルを直接計算できる。
論文 参考訳(メタデータ) (2021-10-15T03:25:28Z) - Very Compact Clusters with Structural Regularization via Similarity and
Connectivity [3.779514860341336]
本稿では,汎用データセットのためのエンドツーエンドのディープクラスタリングアルゴリズムであるVery Compact Clusters (VCC)を提案する。
提案手法は,最先端のクラスタリング手法よりも優れたクラスタリング性能を実現する。
論文 参考訳(メタデータ) (2021-06-09T23:22:03Z) - You Never Cluster Alone [150.94921340034688]
我々は、主流のコントラスト学習パラダイムをクラスタレベルのスキームに拡張し、同じクラスタに属するすべてのデータが統一された表現に寄与する。
分類変数の集合をクラスタ化代入信頼度として定義し、インスタンスレベルの学習トラックとクラスタレベルの学習トラックを関連付ける。
代入変数を再パラメータ化することで、TCCはエンドツーエンドでトレーニングされる。
論文 参考訳(メタデータ) (2021-06-03T14:59:59Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Contrastive Clustering [57.71729650297379]
本稿では,インスタンスレベルのコントラスト学習を明示的に行うContrastive Clustering (CC)を提案する。
特にCCは、CIFAR-10(CIFAR-100)データセット上で0.705(0.431)のNMIを達成しており、最高のベースラインと比較して最大19%(39%)のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-09-21T08:54:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。