Realization of Heisenberg models of spin systems with polar molecules in
pendular states
- URL: http://arxiv.org/abs/2112.14981v1
- Date: Thu, 30 Dec 2021 09:31:47 GMT
- Title: Realization of Heisenberg models of spin systems with polar molecules in
pendular states
- Authors: Wenjing Yue, Qi Wei, Sabre Kais, Bretislav Friedrich, and Dudley
Herschbach
- Abstract summary: We show that ultracold polar diatomic or linear molecules can be used to realize the exact Heisenberg XYZ, XXZ and XY models without invoking any approximation.
The two lowest lying excited pendular states coupled by microwave or radio-frequency fields are used to encode the pseudo-spin.
We calculate the phase diagram for a linear chain of polar molecules based on the Heisenberg models and discuss their drawbacks, advantages, and potential applications.
- Score: 0.5837061763460747
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show that ultracold polar diatomic or linear molecules, oriented in an
external electric field and mutually coupled by dipole-dipole interactions, can
be used to realize the exact Heisenberg XYZ, XXZ and XY models without invoking
any approximation. The two lowest lying excited pendular states coupled by
microwave or radio-frequency fields are used to encode the pseudo-spin. We map
out the general features of the models by evaluating the models' constants as
functions of the molecular dipole moment, rotational constant, strength and
direction of the external field as well as the distance between molecules. We
calculate the phase diagram for a linear chain of polar molecules based on the
Heisenberg models and discuss their drawbacks, advantages, and potential
applications.
Related papers
- Unveiling the Quantum Toroidal Dipole in Nanosystems: Quantization,
Interaction Energy, and Measurement [44.99833362998488]
We investigate a quantum particle confined to a toroidal surface in the presence of a filiform current along the system's rotational axis.
Our analysis reveals that the interaction between the particle and the current induces a non-zero toroidal dipole in the particle's stationary states.
arXiv Detail & Related papers (2024-01-26T13:31:32Z) - Observation of Rydberg blockade due to the charge-dipole interaction
between an atom and a polar molecule [52.77024349608834]
We demonstrate Rydberg blockade due to the charge-dipole interaction between a single Rb atom and a single RbCs molecule confined in optical tweezers.
Results open up the prospect of a hybrid platform where quantum information is transferred between individually trapped molecules using Rydberg atoms.
arXiv Detail & Related papers (2023-03-10T18:41:20Z) - Rotational properties of two interacting cold polar molecules: linear, symmetric, and asymmetric tops [0.0]
We model the molecules as quantum rigid rotors to take their rotational degrees of freedom into account.
We find that the properties of the molecules depend strongly on the field's direction at short separations.
The latter provides insight into the possible effects of accounting for rotational degrees of freedom in molecular dipolar gases.
arXiv Detail & Related papers (2023-03-03T20:17:56Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Dynamical generation of spin squeezing in ultra-cold dipolar molecules [2.6950517214073693]
We study a bulk fermionic dipolar molecular gas in the quantum degenerate regime confined in a two-dimensional geometry.
We derive a long-range interacting XXZ model describing the many-body spin dynamics of the molecules valid in the regime where motional degrees of freedom are frozen.
arXiv Detail & Related papers (2020-11-16T19:00:08Z) - Magnetic properties and quench dynamics of two interacting ultracold
molecules in a trap [0.0]
We investigate the magnetic properties and nonequilibrium dynamics of two interacting ultracold polar and paramagnetic molecules in a harmonic trap in external electric and magnetic fields.
The molecules interact via a multichannel two-body contact potential, incorporating the short-range anisotropy of intermolecular interactions.
arXiv Detail & Related papers (2020-10-22T17:35:46Z) - The Shape of the Electric Dipole Function Determines the Sub-Picosecond
Dynamics of Anharmonic Vibrational Polaritons [0.0]
We describe for the first time the essential role of permanent dipole moments in the femtosecond dynamics of vibrational polariton wavepackets.
We propose a non-adiabatic state preparation scheme to generate vibrational polaritons using nanoscale infrared antennas and UV-vis photochemistry or electron tunneling.
arXiv Detail & Related papers (2020-03-17T15:55:09Z) - Paraxial wave function and Gouy phase for a relativistic electron in a
uniform magnetic field [68.8204255655161]
A connection between quantum mechanics and paraxial equations is established for a Dirac particle in external fields.
The paraxial form of the Landau eigenfunction for a relativistic electron in a uniform magnetic field is determined.
arXiv Detail & Related papers (2020-03-08T13:14:44Z) - Propagation of optically tunable coherent radiation in a gas of polar
molecules [0.0]
Two-level molecular systems without inversion symmetry are considered as all-optically tunable sources of coherent radiation in the microwave domain.
A theoretical model and a numerical toolbox are developed to confirm the main finding.
We find that even though decoherence mechanisms such as spontaneous emission may damp the output field, a scenario based on pulsed illumination yields a coherent, pulsed output of temporal width.
arXiv Detail & Related papers (2020-02-13T12:16:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.