Swap Test with Quantum-Dot Charge Qubits
- URL: http://arxiv.org/abs/2112.15517v1
- Date: Fri, 31 Dec 2021 15:30:03 GMT
- Title: Swap Test with Quantum-Dot Charge Qubits
- Authors: Y.-D. Li, N. Barraza, G. Alvarado Barrios, E. Solano, and F.
Albarr\'an-Arriagada
- Abstract summary: We propose the implementation of the Swap Test using a charge qubit in a double quantum dot.
This work paves the way for enhancing the toolbox of quantum machine learning developments in semiconductor qubits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose the implementation of the Swap Test using a charge qubit in a
double quantum dot. The Swap Test is a fundamental quantum subroutine in
quantum machine learning and other applications for estimating the fidelity of
two unknown quantum states by measuring an auxiliary qubit. Our proposal uses a
controlled three-qubit gate which is natural to quantum-dot charge qubits. It
allows us to implement a Swap Test with a circuit depth of six layers, and an
estimated gate time of less than 3 ns, that is below the coherence time of
double quantum dots. This work paves the way for enhancing the toolbox of
quantum machine learning developments in semiconductor qubits.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Preparation of Entangled Many-Body States with Machine Learning [0.06768558752130309]
Preparation of a target quantum many-body state on quantum simulators is one of the significant steps in quantum science and technology.
With a small number of qubits, a few quantum states, such as the Greenberger-Horne-Zeilinger state, have been prepared, but fundamental difficulties in systems with many qubits remain.
Here, we provide one algorithm with an implementation of a deep learning process and achieve to prepare the target ground states with many qubits.
arXiv Detail & Related papers (2023-07-27T05:03:57Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Assisted quantum simulation of open quantum systems [0.0]
We introduce the quantum-assisted quantum algorithm, which reduces the circuit depth of UQA via NISQ technology.
We present two quantum-assisted quantum algorithms for simulating open quantum systems.
arXiv Detail & Related papers (2023-02-26T11:41:02Z) - Oblivious Quantum Computation and Delegated Multiparty Quantum
Computation [61.12008553173672]
We propose a new concept, oblivious computation quantum computation, where secrecy of the input qubits and the program to identify the quantum gates are required.
Exploiting quantum teleportation, we propose a two-server protocol for this task.
Also, we discuss delegated multiparty quantum computation, in which, several users ask multiparty quantum computation to server(s) only using classical communications.
arXiv Detail & Related papers (2022-11-02T09:01:33Z) - An Amplitude-Based Implementation of the Unit Step Function on a Quantum
Computer [0.0]
We introduce an amplitude-based implementation for approximating non-linearity in the form of the unit step function on a quantum computer.
We describe two distinct circuit types which receive their input either directly from a classical computer, or as a quantum state when embedded in a more advanced quantum algorithm.
arXiv Detail & Related papers (2022-06-07T07:14:12Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Moving Quantum States without SWAP via Intermediate Higher Dimensional
Qudits [3.5450828190071646]
This paper introduces a new formalism of moving quantum states without using SWAP operation.
Moving quantum states through qubits have been attained with the adoption of temporary intermediate qudit states.
arXiv Detail & Related papers (2021-06-16T19:21:53Z) - Continuous Variable Quantum Advantages and Applications in Quantum
Optics [0.0]
This thesis focuses on three main questions in the continuous variable and optical settings.
Where does a quantum advantage, that is, the ability of quantum machines to outperform classical machines, come from?
What advantages can be gained in practice from the use of quantum information?
arXiv Detail & Related papers (2021-02-10T02:43:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.