論文の概要: Transfer learning for cancer diagnosis in histopathological images
- arxiv url: http://arxiv.org/abs/2112.15523v1
- Date: Fri, 31 Dec 2021 15:43:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-03 15:01:01.464118
- Title: Transfer learning for cancer diagnosis in histopathological images
- Title(参考訳): 病理組織像における癌診断のためのトランスファーラーニング
- Authors: Sandhya Aneja, Nagender Aneja, Pg Emeroylariffion Abas, Abdul Ghani
Naim
- Abstract要約: 病理組織学的癌検出データセットにおける14の事前学習画像ネットモデルの性能の比較を行った。
Densenet161は高精度であることが示されているが、Resnet101は高いリコールを持っている。
結果は、転送学習がモデルをより早く収束させるのに役立つことも示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transfer learning allows us to exploit knowledge gained from one task to
assist in solving another but relevant task. In modern computer vision
research, the question is which architecture performs better for a given
dataset. In this paper, we compare the performance of 14 pre-trained ImageNet
models on the histopathologic cancer detection dataset, where each model has
been configured as a naive model, feature extractor model, or fine-tuned model.
Densenet161 has been shown to have high precision whilst Resnet101 has a high
recall. A high precision model is suitable to be used when follow-up
examination cost is high, whilst low precision but a high recall/sensitivity
model can be used when the cost of follow-up examination is low. Results also
show that transfer learning helps to converge a model faster.
- Abstract(参考訳): トランスファー学習は、あるタスクから得られた知識を活用して、別のタスクの解決を支援することができます。
現代のコンピュータビジョン研究において、問題はどのアーキテクチャが与えられたデータセットに対してより良く機能するかである。
本稿では,各モデルがネーティブモデル,特徴抽出モデル,微調整モデルとして構成された病理組織学的癌検出データセット上で,14種類の画像ネットモデルの性能を比較する。
densenet161は精度が高く、resnet101は高いリコール率を持つ。
フォローアップ試験コストが高い場合には高精度モデルが適しているが、フォローアップ試験コストが低い場合には、精度は低いが高いリコール/感度モデルを用いることができる。
また、トランスファー学習はモデルをより早く収束させるのに役立つ。
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Comparative Performance Analysis of Transformer-Based Pre-Trained Models for Detecting Keratoconus Disease [0.0]
本研究は、変性眼疾患である角膜症(keratoconus)の診断のために、訓練済みの8つのCNNを比較した。
MobileNetV2は角膜と正常な症例を誤分類の少ない場合に最も正確なモデルであった。
論文 参考訳(メタデータ) (2024-08-16T20:15:24Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
ディープラーニングを医療分野に適用する上で最大の課題は、トレーニングデータの提供である。
データ拡張は、限られたデータセットに直面した時に機械学習で使用される典型的な方法論である。
本研究は, 新型コロナウイルスの胸部X線画像セットを限定して, StyleGAN2-ADAモデルを用いて訓練するものである。
論文 参考訳(メタデータ) (2023-04-18T15:39:58Z) - Explainable and Lightweight Model for COVID-19 Detection Using Chest
Radiology Images [0.0]
畳み込みニューラルネットワーク(CNN)は、大量のデータをトレーニングする際の画像解析タスクに適している。
新型コロナウイルス(COVID-19)の検出のために提案されたツールのほとんどは、高い感度とリコールを持っているが、目に見えないデータセットでのテストでは、一般化と実行に失敗している。
本研究は,提案モデルの成功と失敗について,画像レベルで詳細に考察する。
論文 参考訳(メタデータ) (2022-12-28T11:48:29Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
リソグラフィーモデリングは、チップ設計マスクが製造可能であることを保証するため、チップ設計において重要な問題である。
機械学習の最近の進歩は、時間を要するリソグラフィーシミュレーションをディープニューラルネットワークに置き換えるための代替ソリューションを提供している。
本稿では,限られたデータのジレンマを解消し,機械学習モデルの性能を向上させるために,データ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-27T20:53:39Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
CAD(Computer-Aided Diagnosis)では、従来の分類モデルでは、主に1つのネットワークを使って特徴を抽出する。
本稿では良性病変と悪性病変のバイナリ分類のための画像レベルラベルに基づく深層アンサンブルモデルを提案する。
結果: アンサンブルネットワークモデルにおいて、画像レベルのバイナリ分類は9,8.90%の精度を達成する。
論文 参考訳(メタデータ) (2022-04-18T13:31:53Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
新型コロナの診断を改善するための多段階集中移動学習フレームワークを提案する。
提案するフレームワークは、複数のソースタスクと異なるドメインのデータから知識を学習し、正確な診断モデルを訓練する3つの段階からなる。
本稿では,肺CT画像のマルチスケール表現を学習するための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-14T01:39:19Z) - Metastatic Cancer Image Classification Based On Deep Learning Method [7.832709940526033]
画像分類におけるディープラーニングアルゴリズム, DenseNet169 フレームワーク, Rectified Adam 最適化アルゴリズムを併用したNoval法を提案する。
我々のモデルは、Vgg19、Resnet34、Resnet50のような他の古典的畳み込みニューラルネットワークアプローチよりも優れた性能を実現する。
論文 参考訳(メタデータ) (2020-11-13T16:04:39Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - Do Adversarially Robust ImageNet Models Transfer Better? [102.09335596483695]
逆向きに堅牢なモデルは、トランスファーラーニングに使用する場合、標準訓練されたモデルよりもよく機能する。
私たちの結果は、ロバストさが機能表現の改善につながるという最近の仮説と一致しています。
論文 参考訳(メタデータ) (2020-07-16T17:42:40Z) - Deep Medical Image Analysis with Representation Learning and
Neuromorphic Computing [1.43494686131174]
回転やアフィン変換に頑健な表現を明示的に学習するカプセルネットワークを提案する。
第2に、最新のドメイン適応技術を活用して、新しい最先端の精度を実現する。
第3に、Intel Loihiニューロモルフィックチップでトレーニングされたスパイクニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2020-05-11T20:56:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。