論文の概要: SurfGen: Adversarial 3D Shape Synthesis with Explicit Surface
Discriminators
- arxiv url: http://arxiv.org/abs/2201.00112v1
- Date: Sat, 1 Jan 2022 04:44:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-04 14:20:54.595450
- Title: SurfGen: Adversarial 3D Shape Synthesis with Explicit Surface
Discriminators
- Title(参考訳): SurfGen: 表面識別器を用いた逆3次元形状合成
- Authors: Andrew Luo, Tianqin Li, Wen-Hao Zhang, Tai Sing Lee
- Abstract要約: 本研究では,物体表面に直接対向学習を行う3次元形状合成フレームワーク(SurfGen)を提案する。
提案手法では, 球面上に定義された関数として, 暗黙的な3次元ジェネレータの自明な零等方面を捕捉し, 表現するために, 微分可能な球面射影層を用いる。
大規模形状データセットを用いて本モデルの評価を行い,多種多様なトポロジを持つ高忠実度3次元形状を創出できることを実証した。
- 参考スコア(独自算出の注目度): 5.575197901329888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in deep generative models have led to immense progress in 3D
shape synthesis. While existing models are able to synthesize shapes
represented as voxels, point-clouds, or implicit functions, these methods only
indirectly enforce the plausibility of the final 3D shape surface. Here we
present a 3D shape synthesis framework (SurfGen) that directly applies
adversarial training to the object surface. Our approach uses a differentiable
spherical projection layer to capture and represent the explicit zero
isosurface of an implicit 3D generator as functions defined on the unit sphere.
By processing the spherical representation of 3D object surfaces with a
spherical CNN in an adversarial setting, our generator can better learn the
statistics of natural shape surfaces. We evaluate our model on large-scale
shape datasets, and demonstrate that the end-to-end trained model is capable of
generating high fidelity 3D shapes with diverse topology.
- Abstract(参考訳): 深部生成モデルの最近の進歩は、3次元形状合成の大幅な進歩をもたらした。
既存のモデルは、ボクセル、点雲、暗黙の関数として表される形状を合成できるが、これらの手法は、最終的な3次元形状表面の妥当性を間接的にのみ強制する。
本稿では,物体表面への逆訓練を直接適用する3次元形状合成フレームワーク(surfgen)を提案する。
提案手法では, 球面上に定義された関数として, 暗黙的な3次元ジェネレータの自明な零等方面を捕捉し, 表現するために, 微分可能な球面射影層を用いる。
球面CNNを用いて3次元物体表面の球面表現を逆向きに処理することにより,自然形状面の統計をよりよく学習することができる。
大規模形状データセットを用いて本モデルを評価し,多種多様なトポロジーを持つ高忠実度3次元形状を生成可能であることを示す。
関連論文リスト
- 3D Geometry-aware Deformable Gaussian Splatting for Dynamic View Synthesis [49.352765055181436]
動的ビュー合成のための3次元幾何学的変形可能なガウススメッティング法を提案する。
提案手法は,動的ビュー合成と3次元動的再構成を改良した3次元形状認識変形モデリングを実現する。
論文 参考訳(メタデータ) (2024-04-09T12:47:30Z) - NeuSDFusion: A Spatial-Aware Generative Model for 3D Shape Completion, Reconstruction, and Generation [52.772319840580074]
3D形状生成は、特定の条件や制約に固執する革新的な3Dコンテンツを作成することを目的としている。
既存の方法は、しばしば3Dの形状を局所化されたコンポーネントの列に分解し、各要素を分離して扱う。
本研究では2次元平面表現を利用した空間認識型3次元形状生成フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-27T04:09:34Z) - LISR: Learning Linear 3D Implicit Surface Representation Using Compactly
Supported Radial Basis Functions [5.056545768004376]
部分的かつノイズの多い3次元点雲スキャンから物体を3次元表面で再構成することは、古典的な幾何学処理と3次元コンピュータビジョンの問題である。
本稿では,物体の3次元表面の線形暗黙的形状表現を学習するためのニューラルネットワークアーキテクチャを提案する。
提案手法は,ベンチマークデータセットの最先端手法よりも,チャムファー距離と同等のFスコアを実現する。
論文 参考訳(メタデータ) (2024-02-11T20:42:49Z) - Ghost on the Shell: An Expressive Representation of General 3D Shapes [97.76840585617907]
リアルな素材と照明で高速な物理ベースのレンダリングを可能にするので、メッシュは魅力的だ。
近年の3次元形状の再構成と統計的モデリングの研究は、メッシュをトポロジカルに非フレキシブルであると批判している。
我々は水密面上の多様体符号距離場を定義することにより開曲面をパラメータ化する。
G-Shellは、非水密メッシュ再構築および生成タスクにおける最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-10-23T17:59:52Z) - FullFormer: Generating Shapes Inside Shapes [9.195909458772187]
本稿では,複雑な3次元形状を内部幾何学的詳細で生成するための最初の暗黙的生成モデルを提案する。
我々のモデルは、非水密メッシュデータから学習できるネストした3次元表面を表現するために符号のない距離場を使用する。
本研究では,ShapeNetデータセットの"Cars","Planes","Chairs"といった一般的なクラス上で,最先端のクラウド生成結果が得られたことを実証する。
論文 参考訳(メタデータ) (2023-03-20T16:19:23Z) - 3D-LDM: Neural Implicit 3D Shape Generation with Latent Diffusion Models [8.583859530633417]
自動復号器の潜時空間で動作する3次元形状のニューラル暗黙表現のための拡散モデルを提案する。
これにより、多種多様な高品質な3D表面を生成できます。
論文 参考訳(メタデータ) (2022-12-01T20:00:00Z) - Learning to Generate 3D Shapes from a Single Example [28.707149807472685]
本稿では,入力形状の幾何学的特徴を空間的範囲にわたって捉えるために,マルチスケールのGANモデルを提案する。
我々は、外部の監督や手動のアノテーションを必要とせずに、基準形状のボクセルピラミッドで生成モデルを訓練する。
結果の形状は異なるスケールで変化を示し、同時に基準形状のグローバルな構造を保持する。
論文 参考訳(メタデータ) (2022-08-05T01:05:32Z) - Disentangled3D: Learning a 3D Generative Model with Disentangled
Geometry and Appearance from Monocular Images [94.49117671450531]
最先端の3D生成モデルは、合成に神経的な3Dボリューム表現を使用するGANである。
本稿では,単分子観察だけで物体の絡み合ったモデルを学ぶことができる3D GANを設計する。
論文 参考訳(メタデータ) (2022-03-29T22:03:18Z) - Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D
Shape Synthesis [90.26556260531707]
DMTetは粗いボクセルのような単純なユーザーガイドを用いて高解像度の3次元形状を合成できる条件付き生成モデルである。
メッシュなどの明示的な表現を直接生成する深部3次元生成モデルとは異なり、我々のモデルは任意の位相で形状を合成することができる。
論文 参考訳(メタデータ) (2021-11-08T05:29:35Z) - Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis
and Analysis [143.22192229456306]
本稿では,体積形状を表す3次元エネルギーモデルを提案する。
提案モデルの利点は6倍である。
実験により,提案モデルが高品質な3d形状パターンを生成できることが実証された。
論文 参考訳(メタデータ) (2020-12-25T06:09:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。