論文の概要: Toward the Analysis of Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2201.00115v1
- Date: Sat, 1 Jan 2022 04:59:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-04 15:15:40.259909
- Title: Toward the Analysis of Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークの解析に向けて
- Authors: Thanh-Dat Nguyen, Thanh Le-Cong, ThanhVu H. Nguyen, Xuan-Bach D. Le,
Quyet-Thang Huynh
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフ構造化データ分析のための堅牢なフレームワークとして登場した。
本稿では,GNNをフィードフォワードニューラルネットワーク(Feed Forward Neural Networks:FFNN)に変換し,既存のFFNN分析を再利用することで,GNNの分析手法を提案する。
- 参考スコア(独自算出の注目度): 1.0412114420493723
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Graph Neural Networks (GNNs) have recently emerged as a robust framework for
graph-structured data. They have been applied to many problems such as
knowledge graph analysis, social networks recommendation, and even Covid19
detection and vaccine developments. However, unlike other deep neural networks
such as Feed Forward Neural Networks (FFNNs), few analyses such as verification
and property inferences exist, potentially due to dynamic behaviors of GNNs,
which can take arbitrary graphs as input, whereas FFNNs which only take fixed
size numerical vectors as inputs.
This paper proposes an approach to analyze GNNs by converting them into FFNNs
and reusing existing FFNNs analyses. We discuss various designs to ensure the
scalability and accuracy of the conversions. We illustrate our method on a
study case of node classification. We believe that our approach opens new
research directions for understanding and analyzing GNNs.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ構造化データの堅牢なフレームワークとして最近登場した。
知識グラフ分析やソーシャルネットワークの推薦,さらにはCovid19の検出やワクチン開発など,多くの問題に適用されている。
しかし、フィードフォワードニューラルネットワーク(ffnn)のような他のディープニューラルネットワークとは異なり、検証や特性推論のような分析は存在せず、任意のグラフを入力として扱うことができるgnnの動的振る舞いによる可能性がある。
本稿では,GNNをFFNNに変換し,既存のFFNN分析を再利用することで,GNNの分析手法を提案する。
変換のスケーラビリティと精度を確保するために,様々な設計について論じる。
本稿では,ノード分類の研究事例について概説する。
我々は,GNNの理解と分析のための新たな研究の方向性を開拓する。
関連論文リスト
- Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションで広く使われている。
しかし、多様な情報源から生じるGNNの予測的不確実性は、不安定で誤った予測につながる可能性がある。
本調査は,不確実性の観点からGNNの概要を概観することを目的としている。
論文 参考訳(メタデータ) (2024-03-11T21:54:52Z) - Information Flow in Graph Neural Networks: A Clinical Triage Use Case [49.86931948849343]
グラフニューラルネットワーク(GNN)は、マルチモーダルグラフとマルチリレーショナルグラフを処理する能力によって、医療やその他の領域で人気を集めている。
GNNにおける埋め込み情報のフローが知識グラフ(KG)におけるリンクの予測に与える影響について検討する。
以上の結果から,ドメイン知識をGNN接続に組み込むことで,KGと同じ接続を使用する場合や,制約のない埋め込み伝搬を行う場合よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-09-12T09:18:12Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - A Survey of Explainable Graph Neural Networks: Taxonomy and Evaluation
Metrics [8.795591344648294]
本稿では,説明可能なグラフニューラルネットワークに着目し,説明可能な手法を用いて分類する。
我々は,GNNの解説に共通する性能指標を提供し,今後の研究の方向性を指摘する。
論文 参考訳(メタデータ) (2022-07-26T01:45:54Z) - Explainability in Graph Neural Networks: An Experimental Survey [12.440636971075977]
グラフ表現学習のためのグラフニューラルネットワーク(GNN)が広く開発されている。
GNNは、その基盤となるメカニズムを理解できないため、ブラックボックスの問題に悩まされる。
GNNによる意思決定を説明するために、いくつかのGNN説明可能性法が提案されている。
論文 参考訳(メタデータ) (2022-03-17T11:25:41Z) - Edge-Level Explanations for Graph Neural Networks by Extending
Explainability Methods for Convolutional Neural Networks [33.20913249848369]
グラフニューラルネットワーク(GNN)は、グラフデータを入力として扱うディープラーニングモデルであり、トラフィック予測や分子特性予測といった様々なタスクに適用される。
本稿では,CNNに対する説明可能性の手法として,LIME(Local Interpretable Model-Agnostic Explanations)やGradient-Based Saliency Maps,Gradient-Weighted Class Activation Mapping(Grad-CAM)をGNNに拡張する。
実験結果から,LIMEに基づくアプローチは実環境における複数のタスクに対する最も効率的な説明可能性手法であり,その状態においても優れていたことが示唆された。
論文 参考訳(メタデータ) (2021-11-01T06:27:29Z) - GNNLens: A Visual Analytics Approach for Prediction Error Diagnosis of
Graph Neural Networks [42.222552078920216]
Graph Neural Networks(GNN)は、ディープラーニング技術をグラフデータに拡張することを目的としている。
GNNは、モデル開発者やユーザから詳細を隠したブラックボックスのように振る舞う。
したがって、GNNの潜在的なエラーを診断することは困難である。
本稿では,対話型視覚分析ツールGNNLensで研究ギャップを埋め,モデル開発者やユーザによるGNNの理解と分析を支援する。
論文 参考訳(メタデータ) (2020-11-22T16:09:08Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Graph Neural Networks: Architectures, Stability and Transferability [176.3960927323358]
グラフニューラルネットワーク(GNN)は、グラフでサポートされている信号のための情報処理アーキテクチャである。
これらは、個々の層がグラフ畳み込みフィルタのバンクを含む畳み込みニューラルネットワーク(CNN)の一般化である。
論文 参考訳(メタデータ) (2020-08-04T18:57:36Z) - Adversarial Attacks and Defenses on Graphs: A Review, A Tool and
Empirical Studies [73.39668293190019]
敵攻撃は入力に対する小さな摂動によって容易に騙される。
グラフニューラルネットワーク(GNN)がこの脆弱性を継承することを実証している。
本調査では,既存の攻撃と防御を分類し,対応する最先端の手法を概観する。
論文 参考訳(メタデータ) (2020-03-02T04:32:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。