Entropically secure encryption with faster key expansion
- URL: http://arxiv.org/abs/2201.00188v4
- Date: Sun, 23 Oct 2022 06:44:41 GMT
- Title: Entropically secure encryption with faster key expansion
- Authors: Mehmet Huseyin Temel and Boris Skoric
- Abstract summary: We introduce a new key expansion method that is faster than existing ones.
Speed gain is most notable when the key length is a sizeable fraction of the message length.
- Score: 2.355458445741348
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entropically secure encryption is a way to encrypt a large plaintext with a
small key and still have information-theoretic security, thus in a certain
sense circumventing Shannon's result that perfect encryption requires the key
to be at least as long as the entropy of the plaintext. Entropically secure
encryption is not perfect, and it works only if a lower bound is known on the
entropy of the plaintext. The typical implementation is to expand the short key
to the size of the plaintext, e.g. by multiplication with a public random
string, and then use one-time pad encryption. This works in the classical as
well as the quantum setting. In this paper, we introduce a new key expansion
method that is faster than existing ones. We prove that it achieves the same
security. The speed gain is most notable when the key length is a sizeable
fraction of the message length. In particular, a factor of 2 is gained in the
case of approximate randomization of quantum states.
Related papers
- Revocable Encryption, Programs, and More: The Case of Multi-Copy Security [48.53070281993869]
We show the feasibility of revocable primitives, such as revocable encryption and revocable programs.
This suggests that the stronger notion of multi-copy security is within reach in unclonable cryptography.
arXiv Detail & Related papers (2024-10-17T02:37:40Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - Exact Homomorphic Encryption [0.0]
This article proposes a framework dubbed Exact Homomorphic Encryption, EHE, enabling exact computations on encrypted data without the need for pre-decryption.
Two fundamental traits of quantum gates, invertibility and the noncommutativity, establish the success of EHE.
arXiv Detail & Related papers (2024-01-17T07:48:52Z) - Lightweight Public Key Encryption in Post-Quantum Computing Era [0.0]
Confidentiality in our digital world is based on the security of cryptographic algorithms.
In the course of technological progress with quantum computers, the protective function of common encryption algorithms is threatened.
Our concept describes the transformation of a classical asymmetric encryption method to a modern complexity class.
arXiv Detail & Related papers (2023-11-24T21:06:42Z) - Quantum Public-Key Encryption with Tamper-Resilient Public Keys from One-Way Functions [12.45203887838637]
We construct quantum public-key encryption from one-way functions.
In our construction, public keys are quantum, but ciphertexts are classical.
arXiv Detail & Related papers (2023-04-04T13:57:17Z) - RiDDLE: Reversible and Diversified De-identification with Latent
Encryptor [57.66174700276893]
This work presents RiDDLE, short for Reversible and Diversified De-identification with Latent Encryptor.
Built upon a pre-learned StyleGAN2 generator, RiDDLE manages to encrypt and decrypt the facial identity within the latent space.
arXiv Detail & Related papers (2023-03-09T11:03:52Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Device-independent uncloneable encryption [0.0]
We introduce a variant of uncloneable encryption in which several possible decryption keys can decrypt a particular encryption.
We show that this variant of uncloneable encryption can be achieved device-independently.
We show that a simple modification of our scheme yields a single-decryptor encryption scheme.
arXiv Detail & Related papers (2022-10-03T16:17:01Z) - A Variational Quantum Attack for AES-like Symmetric Cryptography [69.80357450216633]
We propose a variational quantum attack algorithm (VQAA) for classical AES-like symmetric cryptography.
In the VQAA, the known ciphertext is encoded as the ground state of a Hamiltonian that is constructed through a regular graph.
arXiv Detail & Related papers (2022-05-07T03:15:15Z) - Deniable Encryption in a Quantum World [6.550883342516878]
We study (sender-)deniable encryption in a setting where the encryption procedure is a quantum algorithm.
We show that quantum unlocks a fundamentally stronger form of deniable encryption, which we call perfect unexplainability.
arXiv Detail & Related papers (2021-12-30T09:45:24Z) - Recovering AES Keys with a Deep Cold Boot Attack [91.22679787578438]
Cold boot attacks inspect the corrupted random access memory soon after the power has been shut down.
In this work, we combine a novel cryptographic variant of a deep error correcting code technique with a modified SAT solver scheme to apply the attack on AES keys.
Our results show that our methods outperform the state of the art attack methods by a very large margin.
arXiv Detail & Related papers (2021-06-09T07:57:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.