Qubit assignment using time reversal
- URL: http://arxiv.org/abs/2201.00445v2
- Date: Mon, 9 Jan 2023 18:56:45 GMT
- Title: Qubit assignment using time reversal
- Authors: Evan Peters, Prasanth Shyamsundar, Andy C. Y. Li, Gabriel Perdue
- Abstract summary: The number of qubits available on noisy quantum computers grows.
It will become necessary to efficiently select a subset of physical qubits to use in a quantum computation.
We provide theoretical justification for this choice of cost function by demonstrating that the optimal qubit assignment coincides with the optimal qubit assignment based on state fidelity in the weak error limit.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the number of qubits available on noisy quantum computers grows, it will
become necessary to efficiently select a subset of physical qubits to use in a
quantum computation. For any given quantum program and device there are many
ways to assign physical qubits for execution of the program, and assignments
will differ in performance due to the variability in quality across qubits and
entangling operations on a single device. Evaluating the performance of each
assignment using fidelity estimation introduces significant experimental
overhead and will be infeasible for many applications, while relying on
standard device benchmarks provides incomplete information about the
performance of any specific program. Furthermore, the number of possible
assignments grows combinatorially in the number of qubits on the device and in
the program, motivating the use of heuristic optimization techniques. We
approach this problem using simulated annealing with a cost function based on
the Loschmidt Echo, a diagnostic that measures the reversibility of a quantum
process. We provide theoretical justification for this choice of cost function
by demonstrating that the optimal qubit assignment coincides with the optimal
qubit assignment based on state fidelity in the weak error limit, and we
provide experimental justification using diagnostics performed on Google's
superconducting qubit devices. We then establish the performance of simulated
annealing for qubit assignment using classical simulations of noisy devices as
well as optimization experiments performed on a quantum processor. Our results
demonstrate that the use of Loschmidt Echoes and simulated annealing provides a
scalable and flexible approach to optimizing qubit assignment on near-term
hardware.
Related papers
- Codesigned counterdiabatic quantum optimization on a photonic quantum processor [6.079051215256144]
We focus on the counterdiabatic protocol with a codesigned approach to implement this algorithm on a photonic quantum processor.
We develop and implement an optimized counterdiabatic method by tackling the higher-order many-body interaction terms.
We experimentally demonstrate the advantages of a codesigned mapping of counterdiabatic quantum dynamics for quantum computing on photonic platforms.
arXiv Detail & Related papers (2024-09-26T15:08:19Z) - Randomized Benchmarking of Local Zeroth-Order Optimizers for Variational
Quantum Systems [65.268245109828]
We compare the performance of classicals across a series of partially-randomized tasks.
We focus on local zeroth-orders due to their generally favorable performance and query-efficiency on quantum systems.
arXiv Detail & Related papers (2023-10-14T02:13:26Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
We propose an On-Chip Hardware-Aware Quantization framework, performing hardware-aware mixed-precision quantization on deployed edge devices.
For efficiency metrics, we built an On-Chip Quantization Aware pipeline, which allows the quantization process to perceive the actual hardware efficiency of the quantization operator.
For accuracy metrics, we propose Mask-Guided Quantization Estimation technology to effectively estimate the accuracy impact of operators in the on-chip scenario.
arXiv Detail & Related papers (2023-09-05T04:39:34Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Performance Evaluations of Noisy Approximate Quantum Fourier Arithmetic [1.1140384738063092]
We implement QFT-based integer addition and multiplications on quantum computers.
These operations are fundamental to various quantum applications.
We evaluate these implementations based on IBM's superconducting qubit architecture.
arXiv Detail & Related papers (2021-12-17T06:51:18Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
Variational quantum algorithms (VQAs) have the potential of utilizing near-term quantum machines to gain certain computational advantages.
Modern VQAs suffer from cumbersome computational overhead, hampered by the tradition of employing a solitary quantum processor to handle large data.
Here we devise an efficient distributed optimization scheme, called QUDIO, to address this issue.
arXiv Detail & Related papers (2021-06-24T08:18:42Z) - Benchmarking quantum co-processors in an application-centric,
hardware-agnostic and scalable way [0.0]
We introduce a new benchmark, dubbed Atos Q-score (TM)
The Q-score measures the maximum number of qubits that can be used effectively to solve the MaxCut optimization problem.
We provide an open-source implementation of Q-score that makes it easy to compute the Q-score of any quantum hardware.
arXiv Detail & Related papers (2021-02-25T16:26:23Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Compilation of Fault-Tolerant Quantum Heuristics for Combinatorial
Optimization [0.14755786263360526]
We explore which quantum algorithms for optimization might be most practical to try out on a small fault-tolerant quantum computer.
Our results discourage the notion that any quantum optimization realizing only a quadratic speedup will achieve an advantage over classical algorithms.
arXiv Detail & Related papers (2020-07-14T22:54:04Z) - Classical Optimizers for Noisy Intermediate-Scale Quantum Devices [1.43494686131174]
We present a collection of tunings tuned for usage on Noisy Intermediate-Scale Quantum (NISQ) devices.
We analyze the efficiency and effectiveness of different minimizes in a VQE case study.
While most results to date concentrated on tuning the quantum VQE circuit, we show that, in the presence of quantum noise, the classical minimizer step needs to be carefully chosen to obtain correct results.
arXiv Detail & Related papers (2020-04-06T21:31:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.