Classical Optimizers for Noisy Intermediate-Scale Quantum Devices
- URL: http://arxiv.org/abs/2004.03004v2
- Date: Thu, 15 Apr 2021 03:03:06 GMT
- Title: Classical Optimizers for Noisy Intermediate-Scale Quantum Devices
- Authors: Wim Lavrijsen, Ana Tudor, Juliane M\"uller, Costin Iancu, Wibe de Jong
- Abstract summary: We present a collection of tunings tuned for usage on Noisy Intermediate-Scale Quantum (NISQ) devices.
We analyze the efficiency and effectiveness of different minimizes in a VQE case study.
While most results to date concentrated on tuning the quantum VQE circuit, we show that, in the presence of quantum noise, the classical minimizer step needs to be carefully chosen to obtain correct results.
- Score: 1.43494686131174
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a collection of optimizers tuned for usage on Noisy
Intermediate-Scale Quantum (NISQ) devices. Optimizers have a range of
applications in quantum computing, including the Variational Quantum
Eigensolver (VQE) and Quantum Approximate Optimization (QAOA) algorithms. They
are also used for calibration tasks, hyperparameter tuning, in machine
learning, etc. We analyze the efficiency and effectiveness of different
optimizers in a VQE case study. VQE is a hybrid algorithm, with a classical
minimizer step driving the next evaluation on the quantum processor. While most
results to date concentrated on tuning the quantum VQE circuit, we show that,
in the presence of quantum noise, the classical minimizer step needs to be
carefully chosen to obtain correct results. We explore state-of-the-art
gradient-free optimizers capable of handling noisy, black-box, cost functions
and stress-test them using a quantum circuit simulation environment with noise
injection capabilities on individual gates. Our results indicate that
specifically tuned optimizers are crucial to obtaining valid science results on
NISQ hardware, and will likely remain necessary even for future fault tolerant
circuits.
Related papers
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Randomized Benchmarking of Local Zeroth-Order Optimizers for Variational
Quantum Systems [65.268245109828]
We compare the performance of classicals across a series of partially-randomized tasks.
We focus on local zeroth-orders due to their generally favorable performance and query-efficiency on quantum systems.
arXiv Detail & Related papers (2023-10-14T02:13:26Z) - QAOA Performance in Noisy Devices: The Effect of Classical Optimizers and Ansatz Depth [0.32985979395737786]
The Quantum Approximate Optimization Algorithm (QAOA) is a variational quantum algorithm for Near-term Intermediate-Scale Quantum computers (NISQ)
This paper presents an investigation into the impact realistic noise on the classical vectors.
We find that while there is no significant difference in the performance of classicals in a state simulation, the Adam and AMSGrads perform best in the presence of shot noise.
arXiv Detail & Related papers (2023-07-19T17:22:44Z) - Efficient Classical Computation of Quantum Mean Values for Shallow QAOA
Circuits [15.279642278652654]
We present a novel graph decomposition based classical algorithm that scales linearly with the number of qubits for the shallow QAOA circuits.
Our results are not only important for the exploration of quantum advantages with QAOA, but also useful for the benchmarking of NISQ processors.
arXiv Detail & Related papers (2021-12-21T12:41:31Z) - The Cost of Improving the Precision of the Variational Quantum
Eigensolver for Quantum Chemistry [0.0]
We study how various types of errors affect the variational quantum eigensolver (VQE)
We find that the optimal way of running the hybrid classical-quantum optimization is to allow some noise in intermediate energy evaluations.
arXiv Detail & Related papers (2021-11-09T06:24:52Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Benchmarking quantum co-processors in an application-centric,
hardware-agnostic and scalable way [0.0]
We introduce a new benchmark, dubbed Atos Q-score (TM)
The Q-score measures the maximum number of qubits that can be used effectively to solve the MaxCut optimization problem.
We provide an open-source implementation of Q-score that makes it easy to compute the Q-score of any quantum hardware.
arXiv Detail & Related papers (2021-02-25T16:26:23Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.