論文の概要: Test and Evaluation of Quadrupedal Walking Gaits through Sim2Real Gap
Quantification
- arxiv url: http://arxiv.org/abs/2201.01323v1
- Date: Tue, 4 Jan 2022 19:24:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-06 20:29:14.590911
- Title: Test and Evaluation of Quadrupedal Walking Gaits through Sim2Real Gap
Quantification
- Title(参考訳): Sim2Real Gap量子化による四足歩行歩行実験と評価
- Authors: Prithvi Akella, Wyatt Ubellacker, and Aaron D. Ames
- Abstract要約: 筆者らは,実システムの能力を評価し,その運用目的を満たすための2段階のアプローチを提案する。
そこで本研究では,シミュレータとハードウェア間でSim2Real Gapを識別することにより,異なる環境間で同じ手順を識別可能であることを示す。
- 参考スコア(独自算出の注目度): 17.11389201781203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this letter, the authors propose a two-step approach to evaluate and
verify a true system's capacity to satisfy its operational objective.
Specifically, whenever the system objective has a quantifiable measure of
satisfaction, i.e. a signal temporal logic specification, a barrier function,
etc - the authors develop two separate optimization problems solvable via a
Bayesian Optimization procedure detailed within. This dual approach has the
added benefit of quantifying the Sim2Real Gap between a system simulator and
its hardware counterpart. Our contributions are twofold. First, we show
repeatability with respect to our outlined optimization procedure in solving
these optimization problems. Second, we show that the same procedure can
discriminate between different environments by identifying the Sim2Real Gap
between a simulator and its hardware counterpart operating in different
environments.
- Abstract(参考訳): 本報告では,実際のシステムの運用目標を満足する能力を評価し,検証するための2段階のアプローチを提案する。
具体的には、システム目標が満足度(すなわち信号時相論理仕様やバリア関数など)の定量値を持つ場合、著者らはベイズ最適化手順を通じて解決可能な2つの異なる最適化問題を開発する。
このデュアルアプローチは、システムシミュレータとハードウェアとのsim2現実のギャップを定量化する付加的な利点がある。
私たちの貢献は2倍です。
まず,これらの最適化問題の解法について,概略最適化手順に関して繰り返し可能性を示す。
第2に,シミュレータと異なる環境で動作するハードウェア間のsim2現実的ギャップを識別することにより,同一の手順で異なる環境を判別できることを示す。
関連論文リスト
- Optimizing Falsification for Learning-Based Control Systems: A Multi-Fidelity Bayesian Approach [40.58350379106314]
ファルシフィケーション問題は システムの安全要件に反する 反例を識別することです
本稿では,様々な精度でシミュレータを利用する多要素ベイズ最適化ファルシフィケーションフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-12T14:51:03Z) - Bayesian Optimization for Non-Convex Two-Stage Stochastic Optimization Problems [2.9016548477524156]
知識に基づく獲得関数を定式化し,第1段と第2段の変数を協調的に最適化する。
可変型間の寸法と長さの差が2段階アルゴリズムの非効率性をもたらすことを示す。
論文 参考訳(メタデータ) (2024-08-30T16:26:31Z) - Exploring End-to-end Differentiable Neural Charged Particle Tracking -- A Loss Landscape Perspective [0.0]
粒子追跡のためのE2E差分型決定型学習手法を提案する。
離散的な代入操作の微分可能なバリエーションは、効率的なネットワーク最適化を可能にすることを示す。
E2Eの微分性は、勾配情報の一般利用に加えて、予測不安定性を緩和するロバスト粒子追跡のための重要なツールである、と我々は主張する。
論文 参考訳(メタデータ) (2024-07-18T11:42:58Z) - Evolutionary Algorithms for Optimizing Emergency Exit Placement in Indoor Environments [0.0]
セルラーオートマトンモデルを用いて歩行者の挙動をシミュレートする。
避難がどの程度成功したか、満足できるかを決定するための計量が提案されている。
2つのメタヒューリスティックアルゴリズム、すなわち反復グリーディと進化的アルゴリズム(EA)がこの問題を解決するために提案されている。
論文 参考訳(メタデータ) (2024-05-28T16:50:42Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
本稿では,AIモデルの分割推論と統合センシング通信(ISAC)を併用した,新しいマルチインテリジェントエッジ人工レイテンシ(AI)システムについて検討する。
推定精度は近似的だが抽出可能な計量、すなわち判別利得を用いて測定する。
論文 参考訳(メタデータ) (2022-07-03T06:57:07Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - An Actor-Critic Method for Simulation-Based Optimization [6.261751912603047]
実現可能な空間から最適な設計を選択するためのシミュレーションに基づく最適化問題に焦点をあてる。
政策探索問題としてサンプリングプロセスを定式化し、強化学習(RL)の観点から解を求める。
いくつかの実験は提案アルゴリズムの有効性を検証するために設計されている。
論文 参考訳(メタデータ) (2021-10-31T09:04:23Z) - An automatic differentiation system for the age of differential privacy [65.35244647521989]
Tritiumは、微分プライベート(DP)機械学習(ML)のための自動微分ベース感度分析フレームワークである
我々は、微分プライベート(DP)機械学習(ML)のための自動微分に基づく感度分析フレームワークTritiumを紹介する。
論文 参考訳(メタデータ) (2021-09-22T08:07:42Z) - Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
Modeling [68.69431580852535]
サブグループフィードバックを取り入れた新しいGPレグレッションを導入する。
我々の修正された回帰は、以前のアプローチと比べて、明らかにばらつきを減らし、したがってより正確な後続を減らした。
我々は2つの異なる社会問題に対してアルゴリズムを実行する。
論文 参考訳(メタデータ) (2021-07-07T03:57:22Z) - Inter-class Discrepancy Alignment for Face Recognition [55.578063356210144]
IA(Inter-class DiscrepancyAlignment)という統合フレームワークを提案する。
IDA-DAOは、画像と隣人の相違を考慮した類似度スコアの整合に使用される。
IDA-SSEは、GANで生成された仮想候補画像を導入することで、説得力のあるクラス間隣人を提供できます。
論文 参考訳(メタデータ) (2021-03-02T08:20:08Z) - Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor
Setups [68.8204255655161]
本論文では,LiDAR,単眼,ステレオカメラを含む任意のセンサのパラメータを校正する手法を提案する。
提案手法は、通常、車両のセットアップで見られるように、非常に異なる解像度とポーズのデバイスを扱うことができる。
論文 参考訳(メタデータ) (2021-01-12T12:02:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。