論文の概要: Multi-objective Bayesian Optimization With Mixed-categorical Design Variables for Expensive-to-evaluate Aeronautical Applications
- arxiv url: http://arxiv.org/abs/2504.09930v1
- Date: Mon, 14 Apr 2025 06:44:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:48:46.459991
- Title: Multi-objective Bayesian Optimization With Mixed-categorical Design Variables for Expensive-to-evaluate Aeronautical Applications
- Title(参考訳): 航空分野における多目的ベイズ最適化
- Authors: Nathalie Bartoli, Thierry Lefebvre, Rémi Lafage, Paul Saves, Youssef Diouane, Joseph Morlier, Jasper Bussemaker, Giuseppa Donelli, Joao Marcos Gomes de Mello, Massimo Mandorino, Pierluigi Della Vecchia,
- Abstract要約: 本研究の目的は,計算コストのかかる複雑なシステムを最適化する新しい手法を開発することである。
提案手法(ベイズ最適化(Bayesian Optimization)と呼ばれる)は、適応サンプリングを用いて探索と利用のトレードオフを促進する。
提案手法の有効性は、欧州計画 AGILE 4.0 の文脈における航空工学的な応用について検証された。
- 参考スコア(独自算出の注目度): 0.47812237695718757
- License:
- Abstract: This work aims at developing new methodologies to optimize computational costly complex systems (e.g., aeronautical engineering systems). The proposed surrogate-based method (often called Bayesian optimization) uses adaptive sampling to promote a trade-off between exploration and exploitation. Our in-house implementation, called SEGOMOE, handles a high number of design variables (continuous, discrete or categorical) and nonlinearities by combining mixtures of experts for the objective and/or the constraints. Additionally, the method handles multi-objective optimization settings, as it allows the construction of accurate Pareto fronts with a minimal number of function evaluations. Different infill criteria have been implemented to handle multiple objectives with or without constraints. The effectiveness of the proposed method was tested on practical aeronautical applications within the context of the European Project AGILE 4.0 and demonstrated favorable results. A first example concerns a retrofitting problem where a comparison between two optimizers have been made. A second example introduces hierarchical variables to deal with architecture system in order to design an aircraft family. The third example increases drastically the number of categorical variables as it combines aircraft design, supply chain and manufacturing process. In this article, we show, on three different realistic problems, various aspects of our optimization codes thanks to the diversity of the treated aircraft problems.
- Abstract(参考訳): 本研究の目的は、計算コストのかかる複雑なシステム(例えば、航空工学システム)を最適化する新しい手法を開発することである。
提案手法(ベイズ最適化(Bayesian Optimization)と呼ばれる)は、適応サンプリングを用いて探索と利用のトレードオフを促進する。
当社の社内実装であるSEGOMOEは,多種多様な設計変数(連続的,離散的,分類的)と非線形性を扱う。
さらに、最小限の関数評価で正確なParetoフロントを構築することができるため、多目的最適化設定を処理する。
制約の有無にかかわらず、複数の目的を扱うために異なる入力基準が実装されている。
提案手法の有効性は、欧州計画 AGILE 4.0 の文脈における航空工学的な応用で検証され、良好な結果が得られた。
最初の例は、2つのオプティマイザの比較がなされたリトライフィッティング問題に関するものである。
第2の例では、航空機のファミリーを設計するためにアーキテクチャシステムを扱う階層変数を紹介している。
第3の例は、航空機の設計、サプライチェーン、製造プロセスを組み合わせたカテゴリ変数の数を大幅に増やす。
本稿では,3つの異なる現実的問題において,航空機問題の多様性により最適化符号の様々な側面を示す。
関連論文リスト
- Vehicle Suspension Recommendation System: Multi-Fidelity Neural Network-based Mechanism Design Optimization [4.038368925548051]
自動車のサスペンションは運転性能と乗り心地を改善するように設計されているが、環境によって異なる種類が利用できる。
従来の設計プロセスは多段階であり、設計候補の数を徐々に減らし、目標性能を満たすためにコスト分析を行う。
近年、AIモデルはFAAの計算コストの削減に利用されている。
論文 参考訳(メタデータ) (2024-10-03T23:54:03Z) - MAP: Low-compute Model Merging with Amortized Pareto Fronts via Quadratic Approximation [80.47072100963017]
Amortized Pareto Front (MAP) を用いた新しい低演算アルゴリズム Model Merging を導入する。
MAPは、複数のモデルをマージするためのスケーリング係数のセットを効率的に識別し、関連するトレードオフを反映する。
また,タスク数が比較的少ないシナリオではベイジアンMAP,タスク数の多い状況ではNested MAPを導入し,計算コストを削減した。
論文 参考訳(メタデータ) (2024-06-11T17:55:25Z) - Diffusion Model for Data-Driven Black-Box Optimization [54.25693582870226]
我々は、強力な生成AI技術である拡散モデルに注目し、ブラックボックス最適化の可能性について検討する。
本研究では,1)実数値報酬関数のノイズ測定と,2)対比較に基づく人間の嗜好の2種類のラベルについて検討する。
提案手法は,設計最適化問題を条件付きサンプリング問題に再構成し,拡散モデルのパワーを有効活用する。
論文 参考訳(メタデータ) (2024-03-20T00:41:12Z) - Compositional Generative Inverse Design [69.22782875567547]
入力変数を設計して目的関数を最適化する逆設計は重要な問題である。
拡散モデルにより得られた学習エネルギー関数を最適化することにより、そのような逆例を避けることができることを示す。
N-body 相互作用タスクと2次元多面体設計タスクにおいて,実験時に学習した拡散モデルを構成することにより,初期状態と境界形状を設計できることを示す。
論文 参考訳(メタデータ) (2024-01-24T01:33:39Z) - Bayesian Quality-Diversity approaches for constrained optimization
problems with mixed continuous, discrete and categorical variables [0.3626013617212667]
シミュレーション予算の制限という観点から,混合変数に基づく新しい品質多様性手法を提案する。
提案手法は、複雑なシステム設計のための意思決定者にとって貴重なトレードオフを提供する。
論文 参考訳(メタデータ) (2023-09-11T14:29:47Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
我々は,従来の最適化タスクから解を転送するアルゴリズムの能力を研究することのできる,システムの柔軟性のためのフレームワークを提案する。
NSGA-IIの柔軟性を2つの変種で検討し,1)2つのタスクの解を同時に最適化し,より適応性が高いと期待されるソース間の解を得る,2)活性化あるいは非活性化の異なる可能性に対応する能動的非アクティブなジェノタイプについて検討した。
その結果,標準NSGA-IIによる適応は目標目標への最適化に必要な評価回数を大幅に削減し,提案した変種は適応コストをさらに向上することがわかった。
論文 参考訳(メタデータ) (2023-05-31T12:07:50Z) - Designing MacPherson Suspension Architectures using Bayesian
Optimization [21.295015276123962]
コンプライアンステストは、まず、規律モデルを用いたコンピュータシミュレーションによって行われる。
このシミュレーションを通した設計は、物理的プロトタイピングとして考慮される。
提案手法は汎用的で,スケーラブルで,効率的であることを示す。
論文 参考訳(メタデータ) (2022-06-17T21:50:25Z) - Automated Circuit Sizing with Multi-objective Optimization based on
Differential Evolution and Bayesian Inference [1.1579778934294358]
一般化微分進化3(GDE3)とガウス過程(GP)に基づく設計最適化手法を提案する。
提案手法は,多数の設計変数を持つ複雑な回路の小型化を実現し,多くの競合対象を最適化する。
本研究では,2つの電圧レギュレータにおいて,異なるレベルの複雑さを示す手法について検討した。
論文 参考訳(メタデータ) (2022-06-06T06:48:45Z) - Multi-objective robust optimization using adaptive surrogate models for
problems with mixed continuous-categorical parameters [0.0]
ロバスト設計の最適化は、不確実性が主に目的関数に影響を与える場合、伝統的に考慮されている。
結果として生じるネスト最適化問題は、非支配的ソート遺伝的アルゴリズム(NSGA-II)において、汎用的な解法を用いて解決することができる。
提案手法は、適応的に構築されたKrigingモデルを用いて、NSGA-IIを順次実行し、量子を推定する。
論文 参考訳(メタデータ) (2022-03-03T20:23:18Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
計算設計の問題は、合成生物学からコンピュータアーキテクチャまで、様々な場面で発生している。
本研究では,分布外入力に対する接地的目標の実際の値を低くする目的関数のモデルを学習する手法を提案する。
COMは、様々なMBO問題に対して、既存のメソッドの実装と性能の面では単純である。
論文 参考訳(メタデータ) (2021-07-14T17:55:28Z) - The multi-objective optimisation of breakwaters using evolutionary
approach [62.997667081978825]
工学的な実践では、港や海岸の既存の保護施設の有効性を高めることがしばしば必要である。
本稿では, ブレークウォーター最適化のための多目的進化的アプローチを提案する。
論文 参考訳(メタデータ) (2020-04-06T21:48:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。