Sparse Super-Regular Networks
- URL: http://arxiv.org/abs/2201.01363v1
- Date: Tue, 4 Jan 2022 22:07:55 GMT
- Title: Sparse Super-Regular Networks
- Authors: Andrew W.E. McDonald and Ali Shokoufandeh
- Abstract summary: It has been argued that sparsely-connected neural networks (SCNs) show improved performance over fully-connected networks (FCNs)
Super-regular networks (SRNs) are neural networks composed of a set of stacked sparse layers of (epsilon, delta)-super-regular pairs, and randomly permuted node order.
We show that SRNs perform similarly to X-Nets via readily reproducible experiments, and offer far greater guarantees and control over network structure.
- Score: 0.44689528869908496
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It has been argued by Thom and Palm that sparsely-connected neural networks
(SCNs) show improved performance over fully-connected networks (FCNs).
Super-regular networks (SRNs) are neural networks composed of a set of stacked
sparse layers of (epsilon, delta)-super-regular pairs, and randomly permuted
node order. Using the Blow-up Lemma, we prove that as a result of the
individual super-regularity of each pair of layers, SRNs guarantee a number of
properties that make them suitable replacements for FCNs for many tasks. These
guarantees include edge uniformity across all large-enough subsets, minimum
node in- and out-degree, input-output sensitivity, and the ability to embed
pre-trained constructs. Indeed, SRNs have the capacity to act like FCNs, and
eliminate the need for costly regularization schemes like Dropout. We show that
SRNs perform similarly to X-Nets via readily reproducible experiments, and
offer far greater guarantees and control over network structure.
Related papers
- NeuraLUT: Hiding Neural Network Density in Boolean Synthesizable Functions [2.7086888205833968]
Field-Programmable Gate Array (FPGA) accelerators have proven successful in handling latency- and resource-critical deep neural network (DNN) inference tasks.
We propose relaxing the boundaries of neurons and mapping entire sub-networks to a single LUT.
We validate our proposed method on a known latency-critical task, jet substructure tagging, and on the classical computer vision task, digit classification using MNIST.
arXiv Detail & Related papers (2024-02-29T16:10:21Z) - Scalable Neural Network Kernels [22.299704296356836]
We introduce scalable neural network kernels (SNNKs), capable of approximating regular feedforward layers (FFLs)
We also introduce the neural network bundling process that applies SNNKs to compactify deep neural network architectures.
Our mechanism provides up to 5x reduction in the number of trainable parameters, while maintaining competitive accuracy.
arXiv Detail & Related papers (2023-10-20T02:12:56Z) - On the Neural Tangent Kernel Analysis of Randomly Pruned Neural Networks [91.3755431537592]
We study how random pruning of the weights affects a neural network's neural kernel (NTK)
In particular, this work establishes an equivalence of the NTKs between a fully-connected neural network and its randomly pruned version.
arXiv Detail & Related papers (2022-03-27T15:22:19Z) - The Sample Complexity of One-Hidden-Layer Neural Networks [57.6421258363243]
We study a class of scalar-valued one-hidden-layer networks, and inputs bounded in Euclidean norm.
We prove that controlling the spectral norm of the hidden layer weight matrix is insufficient to get uniform convergence guarantees.
We analyze two important settings where a mere spectral norm control turns out to be sufficient.
arXiv Detail & Related papers (2022-02-13T07:12:02Z) - A Probabilistic Approach to Neural Network Pruning [20.001091112545065]
We theoretically study the performance of two pruning techniques (random and magnitude-based) on FCNs and CNNs.
The results establish that there exist pruned networks with expressive power within any specified bound from the target network.
arXiv Detail & Related papers (2021-05-20T23:19:43Z) - Encoding the latent posterior of Bayesian Neural Networks for
uncertainty quantification [10.727102755903616]
We aim for efficient deep BNNs amenable to complex computer vision architectures.
We achieve this by leveraging variational autoencoders (VAEs) to learn the interaction and the latent distribution of the parameters at each network layer.
Our approach, Latent-Posterior BNN (LP-BNN), is compatible with the recent BatchEnsemble method, leading to highly efficient (in terms of computation and memory during both training and testing) ensembles.
arXiv Detail & Related papers (2020-12-04T19:50:09Z) - Improving Neural Network with Uniform Sparse Connectivity [0.0]
We propose the novel uniform sparse network (USN) with even and sparse connectivity within each layer.
USN consistently and substantially outperforms the state-of-the-art sparse network models in prediction accuracy, speed and robustness.
arXiv Detail & Related papers (2020-11-29T19:00:05Z) - Exploiting Heterogeneity in Operational Neural Networks by Synaptic
Plasticity [87.32169414230822]
Recently proposed network model, Operational Neural Networks (ONNs), can generalize the conventional Convolutional Neural Networks (CNNs)
In this study the focus is drawn on searching the best-possible operator set(s) for the hidden neurons of the network based on the Synaptic Plasticity paradigm that poses the essential learning theory in biological neurons.
Experimental results over highly challenging problems demonstrate that the elite ONNs even with few neurons and layers can achieve a superior learning performance than GIS-based ONNs.
arXiv Detail & Related papers (2020-08-21T19:03:23Z) - Finite Versus Infinite Neural Networks: an Empirical Study [69.07049353209463]
kernel methods outperform fully-connected finite-width networks.
Centered and ensembled finite networks have reduced posterior variance.
Weight decay and the use of a large learning rate break the correspondence between finite and infinite networks.
arXiv Detail & Related papers (2020-07-31T01:57:47Z) - Neural Parameter Allocation Search [57.190693718951316]
Training neural networks requires increasing amounts of memory.
Existing methods assume networks have many identical layers and utilize hand-crafted sharing strategies that fail to generalize.
We introduce Neural Allocation Search (NPAS), a novel task where the goal is to train a neural network given an arbitrary, fixed parameter budget.
NPAS covers both low-budget regimes, which produce compact networks, as well as a novel high-budget regime, where additional capacity can be added to boost performance without increasing inference FLOPs.
arXiv Detail & Related papers (2020-06-18T15:01:00Z) - Self-Organized Operational Neural Networks with Generative Neurons [87.32169414230822]
ONNs are heterogenous networks with a generalized neuron model that can encapsulate any set of non-linear operators.
We propose Self-organized ONNs (Self-ONNs) with generative neurons that have the ability to adapt (optimize) the nodal operator of each connection.
arXiv Detail & Related papers (2020-04-24T14:37:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.