論文の概要: Using Simulation Optimization to Improve Zero-shot Policy Transfer of
Quadrotors
- arxiv url: http://arxiv.org/abs/2201.01369v1
- Date: Tue, 4 Jan 2022 22:32:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-06 19:50:12.580753
- Title: Using Simulation Optimization to Improve Zero-shot Policy Transfer of
Quadrotors
- Title(参考訳): シミュレーション最適化によるクワッドロータのゼロショットポリシー転送の改善
- Authors: Sven Gronauer, Matthias Kissel, Luca Sacchetto, Mathias Korte, Klaus
Diepold
- Abstract要約: 実世界データを用いて微調整を行うことなく,シミュレーションで完全に強化学習を施した低レベルの制御ポリシを訓練し,四足歩行ロボットに展開することが可能であることを示す。
私たちのニューラルネットワークベースのポリシーは、オンボードセンサーデータのみを使用し、組み込みドローンハードウェアで完全に動作します。
- 参考スコア(独自算出の注目度): 0.14999444543328289
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we show that it is possible to train low-level control policies
with reinforcement learning entirely in simulation and, then, deploy them on a
quadrotor robot without using real-world data to fine-tune. To render zero-shot
policy transfers feasible, we apply simulation optimization to narrow the
reality gap. Our neural network-based policies use only onboard sensor data and
run entirely on the embedded drone hardware. In extensive real-world
experiments, we compare three different control structures ranging from
low-level pulse-width-modulated motor commands to high-level attitude control
based on nested proportional-integral-derivative controllers. Our experiments
show that low-level controllers trained with reinforcement learning require a
more accurate simulation than higher-level control policies.
- Abstract(参考訳): そこで本研究では,強化学習による低レベルの制御ポリシをシミュレーションで完全に訓練し,実世界のデータを使わずに四足歩行ロボットに展開することができることを示す。
ゼロショットポリシー転送を実現するために,シミュレーション最適化を適用し,現実のギャップを狭める。
私たちのニューラルネットワークベースのポリシーは、オンボードセンサーデータのみを使用し、組み込みドローンハードウェアで完全に動作します。
実世界の広範囲な実験では、低レベルパルス幅変調モータ指令からネスト比例積分導出制御に基づく高レベル姿勢制御までの3つの異なる制御構造を比較した。
実験の結果,強化学習で訓練された低レベルコントローラは,高レベル制御ポリシよりも正確なシミュレーションを必要とすることがわかった。
関連論文リスト
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
そこで我々は,AVコントローラのトレーニングにAPG(analytic Policy gradients)アプローチを適用可能なシミュレータを提案し,その設計を行う。
提案するフレームワークは, エージェントがより根底的なポリシーを学ぶのを助けるために, 環境力学の勾配を役立てる, エンド・ツー・エンドの訓練ループに, 微分可能シミュレータを組み込む。
ダイナミクスにおけるパフォーマンスとノイズに対する堅牢性の大幅な改善と、全体としてより直感的なヒューマンライクな処理が見られます。
論文 参考訳(メタデータ) (2024-09-12T11:50:06Z) - Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
本研究では,シミュレート・トゥ・リアルな視覚四重項ナビゲーションタスクにおける分布シフトに対する一般化とロバスト性を改善する手法を提案する。
まず,擬似飛行力学とガウススプラッティングを統合してシミュレータを構築し,その後,液状ニューラルネットワークを用いてロバストなナビゲーションポリシーを訓練する。
このようにして、我々は3次元ガウススプラッティングラディアンス場レンダリング、専門家による実演訓練データのプログラミング、およびLiquid Networkのタスク理解能力の進歩を組み合わせたフルスタックの模倣学習プロトコルを得る。
論文 参考訳(メタデータ) (2024-06-21T13:48:37Z) - Learning to Fly in Seconds [7.259696592534715]
カリキュラム学習と高度に最適化されたシミュレータが,サンプルの複雑さを増し,学習時間の短縮につながることを示す。
我々のフレームワークは、コンシューマ級ラップトップで18秒のトレーニングをした後、直接制御するためのSimulation-to-Real(Sim2Real)転送を可能にする。
論文 参考訳(メタデータ) (2023-11-22T01:06:45Z) - Towards Transferring Tactile-based Continuous Force Control Policies
from Simulation to Robot [19.789369416528604]
グリップフォースコントロールは、物体に作用する力の量を制限することによって、物体を安全に操作することを目的としている。
以前の作品では、手動制御器、モデルベースのアプローチ、あるいはsim-to-realトランスファーを示さなかった。
シミュレーションで訓練されたモデルなしの深層強化学習手法を提案し,さらに微調整を行わずにロボットに移行した。
論文 参考訳(メタデータ) (2023-11-13T11:29:06Z) - Residual Physics Learning and System Identification for Sim-to-real
Transfer of Policies on Buoyancy Assisted Legged Robots [14.760426243769308]
本研究では,BALLUロボットのシステム識別による制御ポリシのロバストなシミュレートを実演する。
標準的な教師あり学習の定式化に頼るのではなく、深層強化学習を利用して外部力政策を訓練する。
シミュレーショントラジェクトリと実世界のトラジェクトリを比較することで,改良されたシミュレーション忠実度を解析する。
論文 参考訳(メタデータ) (2023-03-16T18:49:05Z) - DeXtreme: Transfer of Agile In-hand Manipulation from Simulation to
Reality [64.51295032956118]
我々は人型ロボットの手で頑健な操作を行える政策を訓練する。
本研究は,各種ハードウェアおよびシミュレータのデクスタラス操作におけるsim-to-real転送の可能性を再確認する。
論文 参考訳(メタデータ) (2022-10-25T01:51:36Z) - Bayesian Optimization Meets Hybrid Zero Dynamics: Safe Parameter
Learning for Bipedal Locomotion Control [17.37169551675587]
両足歩行ロボットの移動制御のためのマルチドメイン制御パラメータ学習フレームワークを提案する。
BOを利用して、HZDベースのコントローラで使用される制御パラメータを学習する。
次に、物理ロボットに学習プロセスを適用し、シミュレーションで学習した制御パラメータの修正を学習する。
論文 参考訳(メタデータ) (2022-03-04T20:48:17Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
本稿では,リアル・ツー・シムの報酬分析手法を導入し,リアルなロボット・プラットフォームに対する行動の可能性を確実に予測する。
連続的なアクション空間でオブジェクトを反応的にプッシュするクローズドループコントローラを作成します。
我々は,RMPCが乱雑な環境だけでなく,乱雑な環境においても頑健であり,ベースラインよりも優れていることを観察した。
論文 参考訳(メタデータ) (2021-11-15T18:50:04Z) - Deep Imitation Learning for Bimanual Robotic Manipulation [70.56142804957187]
本稿では,ロボットによるバイマニュアル操作のための深層模倣学習フレームワークを提案する。
中心となる課題は、操作スキルを異なる場所にあるオブジェクトに一般化することである。
i)マルチモーダルダイナミクスを要素運動プリミティブに分解し、(ii)リカレントグラフニューラルネットワークを用いて各プリミティブをパラメータ化して相互作用を捕捉し、(iii)プリミティブを逐次的に構成する高レベルプランナと、プリミティブダイナミクスと逆運動学制御を組み合わせた低レベルコントローラを統合することを提案する。
論文 参考訳(メタデータ) (2020-10-11T01:40:03Z) - Learning a Contact-Adaptive Controller for Robust, Efficient Legged
Locomotion [95.1825179206694]
四足歩行ロボットのためのロバストコントローラを合成するフレームワークを提案する。
高レベルコントローラは、環境の変化に応じてプリミティブのセットを選択することを学習する。
確立された制御方法を使用してプリミティブを堅牢に実行する低レベルコントローラ。
論文 参考訳(メタデータ) (2020-09-21T16:49:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。