Testing a QUBO Formulation of Core-periphery Partitioning on a Quantum
Annealer
- URL: http://arxiv.org/abs/2201.01543v1
- Date: Wed, 5 Jan 2022 11:08:09 GMT
- Title: Testing a QUBO Formulation of Core-periphery Partitioning on a Quantum
Annealer
- Authors: Catherine F. Higham, Desmond J. Higham, Francesco Tudisco
- Abstract summary: We present a new kernel that quantifies success for the task of computing a core-periphery partition for an undirected network.
Finding the associated optimal partitioning may be expressed in the form of a quadratic unconstrained binary optimization problem.
We compare this approach with existing core-periphery partitioning methods.
- Score: 3.093890460224435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new kernel that quantifies success for the task of computing a
core-periphery partition for an undirected network. Finding the associated
optimal partitioning may be expressed in the form of a quadratic unconstrained
binary optimization (QUBO) problem, to which a state-of-the-art quantum
annealer may be applied. We therefore make use of the new objective function to
(a) judge the performance of a quantum annealer, and (b) compare this approach
with existing heuristic core-periphery partitioning methods. The quantum
annealing is performed on the commercially available D-Wave machine. The QUBO
problem involves a full matrix even when the underlying network is sparse.
Hence, we develop and test a sparsified version of the original QUBO which
increases the available problem dimension for the quantum annealer. Results are
provided on both synthetic and real data sets, and we conclude that the
QUBO/quantum annealing approach offers benefits in terms of optimizing this new
quantity of interest.
Related papers
- Evaluating Quantum Optimization for Dynamic Self-Reliant Community Detection [3.6021182997326022]
We formulate a Quadratic Unconstrained Binary Optimization (QUBO) problem suitable for solving using quantum computationcolorblue.
The formulation aims to find communities with maximal self-sufficiency and minimal power flowing between them.
We benchmark the solution quality for multiple approaches: D-Wave's hybrid quantum-classical solvers, classicals, and a branch-and-bound solver.
arXiv Detail & Related papers (2024-07-09T11:44:58Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing [93.83016310295804]
AQCs allow to implement problems of research interest, which has sparked the development of quantum representations for computer vision tasks.
In this work, we explore the potential of using this information for probabilistic balanced k-means clustering.
Instead of discarding non-optimal solutions, we propose to use them to compute calibrated posterior probabilities with little additional compute cost.
This allows us to identify ambiguous solutions and data points, which we demonstrate on a D-Wave AQC on synthetic tasks and real visual data.
arXiv Detail & Related papers (2023-10-18T17:59:45Z) - Multi-sequence alignment using the Quantum Approximate Optimization
Algorithm [0.0]
We present a Hamiltonian formulation and implementation of the Multiple Sequence Alignment problem with the variational Quantum Approximate Optimization Algorithm (QAOA)
We consider a small instance of our QAOA-MSA algorithm in both a quantum simulator and its performance on an actual quantum computer.
While the ideal solution to the instance of MSA investigated is shown to be the most probable state sampled for a shallow p5 quantum circuit, the level of noise in current devices is still a formidable challenge.
arXiv Detail & Related papers (2023-08-23T12:46:24Z) - Particle track reconstruction with noisy intermediate-scale quantum
computers [0.0]
Reconstruction of trajectories of charged particles is a key computational challenge for current and future collider experiments.
The problem can be formulated as a quadratic unconstrained binary optimization (QUBO) and solved using the variational quantum eigensolver (VQE) algorithm.
This work serves as a proof of principle that the VQE could be used for particle tracking and investigates modifications of the VQE to make it more suitable for optimization.
arXiv Detail & Related papers (2023-03-23T13:29:20Z) - Quantum-inspired optimization for wavelength assignment [51.55491037321065]
We propose and develop a quantum-inspired algorithm for solving the wavelength assignment problem.
Our results pave the way to the use of quantum-inspired algorithms for practical problems in telecommunications.
arXiv Detail & Related papers (2022-11-01T07:52:47Z) - Quantum Speedup for Higher-Order Unconstrained Binary Optimization and
MIMO Maximum Likelihood Detection [2.5272389610447856]
We propose a quantum algorithm that supports a real-valued higher-order unconstrained binary optimization problem.
The proposed algorithm is capable of reducing the query complexity in the classical domain and providing a quadratic speedup in the quantum domain.
arXiv Detail & Related papers (2022-05-31T00:14:49Z) - Squeezing and quantum approximate optimization [0.6562256987706128]
Variational quantum algorithms offer fascinating prospects for the solution of optimization problems using digital quantum computers.
However, the achievable performance in such algorithms and the role of quantum correlations therein remain unclear.
We show numerically as well as on an IBM quantum chip how highly squeezed states are generated in a systematic procedure.
arXiv Detail & Related papers (2022-05-20T18:00:06Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - A Hybrid Quantum-Classical Algorithm for Robust Fitting [47.42391857319388]
We propose a hybrid quantum-classical algorithm for robust fitting.
Our core contribution is a novel robust fitting formulation that solves a sequence of integer programs.
We present results obtained using an actual quantum computer.
arXiv Detail & Related papers (2022-01-25T05:59:24Z) - Q-Match: Iterative Shape Matching via Quantum Annealing [64.74942589569596]
Finding shape correspondences can be formulated as an NP-hard quadratic assignment problem (QAP)
This paper proposes Q-Match, a new iterative quantum method for QAPs inspired by the alpha-expansion algorithm.
Q-Match can be applied for shape matching problems iteratively, on a subset of well-chosen correspondences, allowing us to scale to real-world problems.
arXiv Detail & Related papers (2021-05-06T17:59:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.