論文の概要: Culture-to-Culture Image Translation with Generative Adversarial
Networks
- arxiv url: http://arxiv.org/abs/2201.01565v1
- Date: Wed, 5 Jan 2022 12:10:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-06 14:37:08.762313
- Title: Culture-to-Culture Image Translation with Generative Adversarial
Networks
- Title(参考訳): 生成的adversarial networkを用いた文化から文化への画像翻訳
- Authors: Giulia Zaino, Carmine Tommaso Recchiuto, and Antonio Sgorbissa
- Abstract要約: 本稿では,「文化のブラシストローク」の変容過程として定義されたイメージ「文化化」の概念を紹介する。
本稿では,GAN(Generative Adversarial Networks)に基づいて,オブジェクトのイメージをソースからターゲット文化領域に翻訳するパイプラインを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article introduces the concept of image "culturization", i.e., defined
as the process of altering the "brushstroke of cultural features" that make
objects perceived as belonging to a given culture while preserving their
functionalities. First, we propose a pipeline for translating objects' images
from a source to a target cultural domain based on Generative Adversarial
Networks (GAN). Then, we gather data through an online questionnaire to test
four hypotheses concerning the preferences of Italian participants towards
objects and environments belonging to different cultures. As expected, results
depend on individual tastes and preference: however, they are in line with our
conjecture that some people, during the interaction with a robot or another
intelligent system, might prefer to be shown images whose cultural domain has
been modified to match their cultural background.
- Abstract(参考訳): 本論では, イメージ「文化化」の概念,すなわち, 「文化的特徴のブラシストローク」を変容させる過程として定義し, その機能を維持しつつ, 特定の文化に属するものとして認識される物体を創出する。
まず,GAN(Generative Adversarial Networks)に基づいて,オブジェクトのイメージをソースから対象の文化的領域に翻訳するパイプラインを提案する。
そこで,我々は,異なる文化に属する対象や環境に対するイタリア人の嗜好に関する4つの仮説を,オンラインアンケートを通じて収集した。
予想通り、結果は個人の嗜好と好みに依存する:しかし、ロボットや他の知的システムとのインタラクション中に、文化領域が文化的背景に適合するように修正されたイメージを示すのが好まれるかもしれないという我々の推測と一致している。
関連論文リスト
- From Local Concepts to Universals: Evaluating the Multicultural Understanding of Vision-Language Models [10.121734731147376]
視覚言語モデルの性能は、西欧文化のイメージに最適以下である。
様々なベンチマークが、モデルの文化的傾向をテストするために提案されているが、それらは限られた範囲の文化をカバーしている。
我々はGlobalRGベンチマークを導入し、普遍性を越えた検索と文化的な視覚的接地という2つの課題からなる。
論文 参考訳(メタデータ) (2024-06-28T23:28:28Z) - See It from My Perspective: Diagnosing the Western Cultural Bias of Large Vision-Language Models in Image Understanding [78.88461026069862]
視覚言語モデル(VLM)は、多くの言語における画像に関するクエリに応答することができる。
我々は、画像理解における西洋の偏見を実証し、局所化する新しい研究を提案する。
論文 参考訳(メタデータ) (2024-06-17T15:49:51Z) - Extrinsic Evaluation of Cultural Competence in Large Language Models [53.626808086522985]
本稿では,2つのテキスト生成タスクにおける文化能力の評価に焦点をあてる。
我々は,文化,特に国籍の明示的なキューが,そのプロンプトに乱入している場合のモデル出力を評価する。
異なる国におけるアウトプットのテキスト類似性とこれらの国の文化的価値との間には弱い相関関係がある。
論文 参考訳(メタデータ) (2024-06-17T14:03:27Z) - How Culturally Aware are Vision-Language Models? [0.8437187555622164]
神話、民俗舞踊、文化記号、シンボルなどの民俗ジャンルからのイメージは、あらゆる文化にとって不可欠である。
本研究は、これらの画像中の文化的特定情報を特定するために、4つの一般的な視覚言語モデルの性能を比較した。
画像キャプションにおける文化意識の度合いを計測する新しい評価指標であるCAS(Cultural Awareness Score)を提案する。
論文 参考訳(メタデータ) (2024-05-24T04:45:14Z) - CulturePark: Boosting Cross-cultural Understanding in Large Language Models [63.452948673344395]
本稿では,LLMを利用した文化データ収集のためのマルチエージェント通信フレームワークであるCultureParkを紹介する。
人間の信念、規範、習慣をカプセル化した高品質な異文化対話を生成する。
我々はこれらのモデルを,コンテンツモデレーション,文化的アライメント,文化教育という3つの下流課題にまたがって評価する。
論文 参考訳(メタデータ) (2024-05-24T01:49:02Z) - What You Use is What You Get: Unforced Errors in Studying Cultural Aspects in Agile Software Development [2.9418191027447906]
文化的特徴の影響を調べることは、多面的な文化概念のために困難である。
文化的・社会的側面は、実際にの使用が成功する上で非常に重要である。
論文 参考訳(メタデータ) (2024-04-25T20:08:37Z) - Massively Multi-Cultural Knowledge Acquisition & LM Benchmarking [48.21982147529661]
本稿では,多文化知識獲得のための新しいアプローチを提案する。
本手法は,文化トピックに関するウィキペディア文書からリンクページの広範囲なネットワークへ戦略的にナビゲートする。
私たちの仕事は、AIにおける文化的格差のギャップを深く理解し、橋渡しするための重要なステップです。
論文 参考訳(メタデータ) (2024-02-14T18:16:54Z) - Impressions: Understanding Visual Semiotics and Aesthetic Impact [66.40617566253404]
画像のセミオティックスを調べるための新しいデータセットであるImpressionsを提示する。
既存のマルチモーダル画像キャプションと条件付き生成モデルは、画像に対する可視的応答をシミュレートするのに苦労していることを示す。
このデータセットは、微調整と少数ショット適応により、画像の印象や美的評価をモデル化する能力を大幅に改善する。
論文 参考訳(メタデータ) (2023-10-27T04:30:18Z) - Cultural Alignment in Large Language Models: An Explanatory Analysis Based on Hofstede's Cultural Dimensions [10.415002561977655]
本研究は,ホフステデの文化次元の枠組みを用いて文化的アライメントを定量化する文化アライメントテスト (Hoftede's CAT) を提案する。
我々は、米国、中国、アラブ諸国といった地域の文化的側面に対して、大規模言語モデル(LLM)を定量的に評価する。
その結果, LLMの文化的アライメントを定量化し, 説明的文化的次元におけるLCMの差異を明らかにすることができた。
論文 参考訳(メタデータ) (2023-08-25T14:50:13Z) - From Culture to Clothing: Discovering the World Events Behind A Century
of Fashion Images [100.20851232528925]
本稿では,着る衣服に影響を及ぼす特定の文化的要因を特定するための,データ駆動型アプローチを提案する。
私たちの仕事は、計算的、スケーラブルで、簡単にリフレッシュ可能なアプローチによる、カルチャーと衣服のリンクに向けた第一歩です。
論文 参考訳(メタデータ) (2021-02-02T18:58:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。