Enhancing Electron-Nuclear Resonances by Dynamical Control Switching
- URL: http://arxiv.org/abs/2311.10650v1
- Date: Fri, 17 Nov 2023 17:12:47 GMT
- Title: Enhancing Electron-Nuclear Resonances by Dynamical Control Switching
- Authors: Sichen Xu, Chanying Xie, and Zhen-Yu Wang
- Abstract summary: We show that a specific dynamical switching of the electron spin Rabi frequency achieves efficient electron-nuclear coupling.
This protocol has applications in high-field nanoscale nuclear magnetic resonances as well as low-power quantum control of nuclear spins.
- Score: 4.52102208934009
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a general method to realize resonant coupling between spins even
though their energies are of different scales. Applying the method to the
electron and nuclear spin systems such as a nitrogen-vacancy (NV) center with
its nearby nuclei, we show that a specific dynamical switching of the electron
spin Rabi frequency achieves efficient electron-nuclear coupling, providing a
much stronger quantum sensing signal and dynamic nuclear polarization than
previous methods. This protocol has applications in high-field nanoscale
nuclear magnetic resonances as well as low-power quantum control of nuclear
spins.
Related papers
- Tuning the coherent interaction of an electron qubit and a nuclear magnon [30.432877421232842]
A central spin qubit interacting coherently with an ensemble of proximal spins can be used to engineer entangled collective states or a multi-qubit register.
We demonstrate tuning of the interaction between the electron qubit and the nuclear many-body system in a GaAs quantum dot.
arXiv Detail & Related papers (2024-04-30T16:13:01Z) - Hyperpolarisation of nuclear spins: polarisation blockade [0.0]
pulse-based protocols have been shown to efficiently transfer optically induced polarisation of the electron defect spin to surrounding nuclear spins.
We find that whenever polarisation resonances of nuclear spins are near-degenerate with a blocking' spin, which is single spin with stronger off-diagonal coupling to the electronic central spin, they are displaced out of the central resonant region.
arXiv Detail & Related papers (2023-09-07T15:02:54Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - Spin-orbit torque on nuclear spins exerted by a spin accumulation via
hyperfine interactions [49.1574468325115]
This article demonstrates that the hyperfine coupling, which consists of Fermi contact and dipolar interactions, can mediate the application of spin-orbit torques acting on nuclear spins.
The reactions to the equilibrium and nonequilibrium components of the spin density is a torque on the nucleus with field-like and damping-like components.
This nuclear spin-orbit torque is a step toward stabilizing and controlling nuclear magnetic momenta, in magnitude and direction, and realizing nuclear spintronics.
arXiv Detail & Related papers (2023-05-21T08:05:23Z) - Rapidly enhanced spin polarization injection in an optically pumped spin
ratchet [49.1301457567913]
We report on a strategy to boost the spin injection rate by exploiting electrons that can be rapidly polarized.
We demonstrate this in a model system of Nitrogen Vacancy center electrons injecting polarization into a bath of 13C nuclei in diamond.
Through a spin-ratchet polarization transfer mechanism, we show boosts in spin injection rates by over two orders of magnitude.
arXiv Detail & Related papers (2021-12-14T08:23:10Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Coherent Microwave Control of a Nuclear Spin Ensemble at Room
Temperature [0.0]
We demonstrate coherent manipulation of a nuclear spin ensemble using microwave fields at room temperature.
We show that employing an off-axis magnetic field with a modest amplitude is enough to tilt the direction of the electronic spins.
We could then demonstrate fast Rabi oscillations on electron-nuclear spin exchanging transitions, coherent population trapping and polarization of nuclear spin ensembles.
arXiv Detail & Related papers (2020-05-26T23:29:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.