Modeling Human Driver Interactions Using an Infinite Policy Space
Through Gaussian Processes
- URL: http://arxiv.org/abs/2201.01733v1
- Date: Mon, 3 Jan 2022 17:45:58 GMT
- Title: Modeling Human Driver Interactions Using an Infinite Policy Space
Through Gaussian Processes
- Authors: Cem Okan Yaldiz and Yildiray Yildiz
- Abstract summary: This paper proposes a method for modeling human driver interactions that relies on multi-output gaussian processes.
The proposed method is validated on a real traffic dataset to demonstrate its contributions and implications.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a method for modeling human driver interactions that
relies on multi-output gaussian processes. The proposed method is developed as
a refinement of the game theoretical hierarchical reasoning approach called
"level-k reasoning" which conventionally assigns discrete levels of behaviors
to agents. Although it is shown to be an effective modeling tool, the level-k
reasoning approach may pose undesired constraints for predicting human decision
making due to a limited number (usually 2 or 3) of driver policies it extracts.
The proposed approach is put forward to fill this gap in the literature by
introducing a continuous domain framework that enables an infinite policy
space. By using the approach presented in this paper, more accurate driver
models can be obtained, which can then be employed for creating high fidelity
simulation platforms for the validation of autonomous vehicle control
algorithms. The proposed method is validated on a real traffic dataset and
compared with the conventional level-k approach to demonstrate its
contributions and implications.
Related papers
- Constrained Reinforcement Learning with Average Reward Objective: Model-Based and Model-Free Algorithms [34.593772931446125]
monograph focuses on the exploration of various model-based and model-free approaches for Constrained within the context of average reward Markov Decision Processes (MDPs)
The primal-dual policy gradient-based algorithm is explored as a solution for constrained MDPs.
arXiv Detail & Related papers (2024-06-17T12:46:02Z) - Tractable Joint Prediction and Planning over Discrete Behavior Modes for
Urban Driving [15.671811785579118]
We show that we can parameterize autoregressive closed-loop models without retraining.
We propose fully reactive closed-loop planning over discrete latent modes.
Our approach also outperforms the previous state-of-the-art in CARLA on challenging dense traffic scenarios.
arXiv Detail & Related papers (2024-03-12T01:00:52Z) - Learning Transferable Conceptual Prototypes for Interpretable
Unsupervised Domain Adaptation [79.22678026708134]
In this paper, we propose an inherently interpretable method, named Transferable Prototype Learning ( TCPL)
To achieve this goal, we design a hierarchically prototypical module that transfers categorical basic concepts from the source domain to the target domain and learns domain-shared prototypes for explaining the underlying reasoning process.
Comprehensive experiments show that the proposed method can not only provide effective and intuitive explanations but also outperform previous state-of-the-arts.
arXiv Detail & Related papers (2023-10-12T06:36:41Z) - Model Predictive Control with Gaussian-Process-Supported Dynamical
Constraints for Autonomous Vehicles [82.65261980827594]
We propose a model predictive control approach for autonomous vehicles that exploits learned Gaussian processes for predicting human driving behavior.
A multi-mode predictive control approach considers the possible intentions of the human drivers.
arXiv Detail & Related papers (2023-03-08T17:14:57Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
We present a new algorithm for a policy gradient in TMDPs by a simple extension of the proximal policy optimization (PPO) algorithm.
We demonstrate this on a real-world multiple-objective navigation problem with an arbitrary ordering of objectives both in simulation and on a real robot.
arXiv Detail & Related papers (2022-09-15T07:22:58Z) - Planning with Diffusion for Flexible Behavior Synthesis [125.24438991142573]
We consider what it would look like to fold as much of the trajectory optimization pipeline as possible into the modeling problem.
The core of our technical approach lies in a diffusion probabilistic model that plans by iteratively denoising trajectories.
arXiv Detail & Related papers (2022-05-20T07:02:03Z) - Verified Probabilistic Policies for Deep Reinforcement Learning [6.85316573653194]
We tackle the problem of verifying probabilistic policies for deep reinforcement learning.
We propose an abstraction approach, based on interval Markov decision processes, that yields guarantees on a policy's execution.
We present techniques to build and solve these models using abstract interpretation, mixed-integer linear programming, entropy-based refinement and probabilistic model checking.
arXiv Detail & Related papers (2022-01-10T23:55:04Z) - Safe Continuous Control with Constrained Model-Based Policy Optimization [0.0]
We introduce a model-based safe exploration algorithm for constrained high-dimensional control.
We also introduce a practical algorithm that accelerates policy search with model-generated data.
arXiv Detail & Related papers (2021-04-14T15:20:55Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
We present an online framework for safe crowd-robot interaction based on risk-sensitive optimal control, wherein the risk is modeled by the entropic risk measure.
Our modular approach decouples the crowd-robot interaction into learning-based prediction and model-based control.
A simulation study and a real-world experiment show that the proposed framework can accomplish safe and efficient navigation while avoiding collisions with more than 50 humans in the scene.
arXiv Detail & Related papers (2020-09-12T02:02:52Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.