Decision Flow Policy Optimization
- URL: http://arxiv.org/abs/2505.20350v1
- Date: Mon, 26 May 2025 03:42:20 GMT
- Title: Decision Flow Policy Optimization
- Authors: Jifeng Hu, Sili Huang, Siyuan Guo, Zhaogeng Liu, Li Shen, Lichao Sun, Hechang Chen, Yi Chang, Dacheng Tao,
- Abstract summary: We show that generative models can effectively model complex multi-modal action distributions and achieve superior robotic control in continuous action spaces.<n>Previous methods usually adopt the generative models as behavior models to fit state-conditioned action distributions from datasets.<n>We propose Decision Flow, a unified framework that integrates multi-modal action distribution modeling and policy optimization.
- Score: 53.825268058199825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, generative models have shown remarkable capabilities across diverse fields, including images, videos, language, and decision-making. By applying powerful generative models such as flow-based models to reinforcement learning, we can effectively model complex multi-modal action distributions and achieve superior robotic control in continuous action spaces, surpassing the limitations of single-modal action distributions with traditional Gaussian-based policies. Previous methods usually adopt the generative models as behavior models to fit state-conditioned action distributions from datasets, with policy optimization conducted separately through additional policies using value-based sample weighting or gradient-based updates. However, this separation prevents the simultaneous optimization of multi-modal distribution fitting and policy improvement, ultimately hindering the training of models and degrading the performance. To address this issue, we propose Decision Flow, a unified framework that integrates multi-modal action distribution modeling and policy optimization. Specifically, our method formulates the action generation procedure of flow-based models as a flow decision-making process, where each action generation step corresponds to one flow decision. Consequently, our method seamlessly optimizes the flow policy while capturing multi-modal action distributions. We provide rigorous proofs of Decision Flow and validate the effectiveness through extensive experiments across dozens of offline RL environments. Compared with established offline RL baselines, the results demonstrate that our method achieves or matches the SOTA performance.
Related papers
- Flow Matching Policy Gradients [33.011978450108636]
Flow Policy Optimization casts policy optimization as maximizing an advantage-weighted ratio computed from the conditional flow matching loss.<n>We show that FPO can train diffusion-style policies from scratch in a variety of continuous control tasks.<n>We find that flow-based models can capture multimodal action distributions and achieve higher performance than Gaussian policies, particularly in under-conditioned settings.
arXiv Detail & Related papers (2025-07-28T17:59:57Z) - Distilling Reinforcement Learning Algorithms for In-Context Model-Based Planning [39.53836535326121]
We propose Distillation for In-Context Planning (DICP), an in-context model-based RL framework where Transformers simultaneously learn environment dynamics and improve policy in-context.<n>Our results show that DICP achieves state-of-the-art performance while requiring significantly fewer environment interactions than baselines.
arXiv Detail & Related papers (2025-02-26T10:16:57Z) - Preferred-Action-Optimized Diffusion Policies for Offline Reinforcement Learning [19.533619091287676]
We propose a novel preferred-action-optimized diffusion policy for offline reinforcement learning.
In particular, an expressive conditional diffusion model is utilized to represent the diverse distribution of a behavior policy.
Experiments demonstrate that the proposed method provides competitive or superior performance compared to previous state-of-the-art offline RL methods.
arXiv Detail & Related papers (2024-05-29T03:19:59Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
We investigate the challenge of parametrizing policies for reinforcement learning in high-dimensional continuous action spaces.
We propose a principled framework that models the continuous RL policy as a generative model of optimal trajectories.
We present a practical model-based RL method, which leverages the multimodal policy parameterization and learned world model.
arXiv Detail & Related papers (2023-07-20T09:05:46Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Offline Reinforcement Learning via High-Fidelity Generative Behavior
Modeling [34.88897402357158]
We show that due to the limited distributional expressivity of policy models, previous methods might still select unseen actions during training.
We adopt a generative approach by decoupling the learned policy into two parts: an expressive generative behavior model and an action evaluation model.
Our proposed method achieves competitive or superior performance compared with state-of-the-art offline RL methods.
arXiv Detail & Related papers (2022-09-29T04:36:23Z) - Diffusion Policies as an Expressive Policy Class for Offline
Reinforcement Learning [70.20191211010847]
Offline reinforcement learning (RL) aims to learn an optimal policy using a previously collected static dataset.
We introduce Diffusion Q-learning (Diffusion-QL) that utilizes a conditional diffusion model to represent the policy.
We show that our method can achieve state-of-the-art performance on the majority of the D4RL benchmark tasks.
arXiv Detail & Related papers (2022-08-12T09:54:11Z) - Autoregressive Dynamics Models for Offline Policy Evaluation and
Optimization [60.73540999409032]
We show that expressive autoregressive dynamics models generate different dimensions of the next state and reward sequentially conditioned on previous dimensions.
We also show that autoregressive dynamics models are useful for offline policy optimization by serving as a way to enrich the replay buffer.
arXiv Detail & Related papers (2021-04-28T16:48:44Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
Uncertainty estimation with complex models, such as deep neural networks, can be difficult and unreliable.
We develop a new model-based offline RL algorithm, COMBO, that regularizes the value function on out-of-support state-actions.
We find that COMBO consistently performs as well or better as compared to prior offline model-free and model-based methods.
arXiv Detail & Related papers (2021-02-16T18:50:32Z) - Variational Model-based Policy Optimization [34.80171122943031]
Model-based reinforcement learning (RL) algorithms allow us to combine model-generated data with those collected from interaction with the real system in order to alleviate the data efficiency problem in RL.
We propose an objective function as a variational lower-bound of a log-likelihood of a log-likelihood to jointly learn and improve model and policy.
Our experiments on a number of continuous control tasks show that despite being more complex, our model-based (E-step) algorithm, called emactoral model-based policy optimization (VMBPO), is more sample-efficient and
arXiv Detail & Related papers (2020-06-09T18:30:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.