論文の概要: Graph Neural Networks for Double-Strand DNA Breaks Prediction
- arxiv url: http://arxiv.org/abs/2201.01855v1
- Date: Tue, 4 Jan 2022 08:40:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-08 00:18:12.914425
- Title: Graph Neural Networks for Double-Strand DNA Breaks Prediction
- Title(参考訳): 二重転写DNAのためのグラフニューラルネットワーク
- Authors: XU Wang and Huan Zhao and Weiwei TU and Hao Li and Yu Sun and Xiaochen
Bo
- Abstract要約: 二重鎖DNA切断(Double-strand DNA breaks、DSBs)は、異常な染色体再構成を引き起こすDNA損傷の一種である。
DNA配列の特徴と染色体構造情報を用いてDSBを予測するグラフニューラルネットワークを設計する。
- 参考スコア(独自算出の注目度): 24.428367757797226
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Double-strand DNA breaks (DSBs) are a form of DNA damage that can cause
abnormal chromosomal rearrangements. Recent technologies based on
high-throughput experiments have obvious high costs and technical
challenges.Therefore, we design a graph neural network based method to predict
DSBs (GraphDSB), using DNA sequence features and chromosome structure
information. In order to improve the expression ability of the model, we
introduce Jumping Knowledge architecture and several effective structural
encoding methods. The contribution of structural information to the prediction
of DSBs is verified by the experiments on datasets from normal human epidermal
keratinocytes (NHEK) and chronic myeloid leukemia cell line (K562), and the
ablation studies further demonstrate the effectiveness of the designed
components in the proposed GraphDSB framework. Finally, we use GNNExplainer to
analyze the contribution of node features and topology to DSBs prediction, and
proved the high contribution of 5-mer DNA sequence features and two chromatin
interaction modes.
- Abstract(参考訳): 二重鎖DNA切断(Double-strand DNA breaks、DSBs)は、異常な染色体再構成を引き起こすDNA損傷の一種である。
本研究では,dna配列の特徴と染色体構造情報を用いてdsbs(graphdsb)を予測するグラフニューラルネットワークを設計,構築する。
モデルの表現能力を向上させるために,Jumping Knowledge Architectureといくつかの効果的な構造符号化手法を導入する。
正常ヒト表皮ケラチノサイト (NHEK) および慢性骨髄性白血病細胞株 (K562) からのデータセットを用いて, DSBs の予測に対する構造情報の寄与を検証し, さらに, 提案した GraphDSB フレームワークにおける設計成分の有効性について検討した。
最後に,gnnexplainerを用いてdsbs予測へのノード特徴とトポロジーの寄与を分析し,5-merのdna配列特徴と2つのクロマチン相互作用モードの高い寄与を証明した。
関連論文リスト
- CSGDN: Contrastive Signed Graph Diffusion Network for Predicting Crop Gene-phenotype Associations [6.5678927417916455]
我々は、より少ないトレーニングサンプルでロバストなノード表現を学習し、より高いリンク予測精度を実現するために、コントラスト符号付きグラフ拡散ネットワーク(CSGDN)を提案する。
Gossypium hirsutum, Brassica napus, Triticum turgidumの3つの作物データセット上でCSGDNの有効性を検証する実験を行った。
論文 参考訳(メタデータ) (2024-10-10T01:01:10Z) - Dumpling GNN: Hybrid GNN Enables Better ADC Payload Activity Prediction Based on Chemical Structure [53.76752789814785]
DumplingGNNは、化学構造に基づいてADCペイロードのアクティビティを予測するために特別に設計された、ハイブリッドなグラフニューラルネットワークアーキテクチャである。
DNAトポイソメラーゼIインヒビターに着目した包括的ADCペイロードデータセットで評価を行った。
特別なADCペイロードデータセットに対して、例外的な精度(91.48%)、感度95.08%)、特異性(97.54%)を示す。
論文 参考訳(メタデータ) (2024-09-23T17:11:04Z) - Injecting Hierarchical Biological Priors into Graph Neural Networks for Flow Cytometry Prediction [1.7709249262395883]
本研究では、単一セルのマルチクラス分類のためのグラフニューラルネットワーク(GNN)に階層的な事前知識を注入することを検討する。
本稿では,複数のGNNモデル,すなわちFCHC-GNNに適用可能な階層的なプラグイン手法を提案する。
論文 参考訳(メタデータ) (2024-05-28T18:24:16Z) - DNAGPT: A Generalized Pre-trained Tool for Versatile DNA Sequence
Analysis Tasks [14.931476374660944]
DNAGPTは、全哺乳類から200億以上の塩基対をトレーニングした、一般的なDNA事前学習モデルである。
古典的なGPTモデルをバイナリ分類タスク、数値回帰タスク、包括的トークン言語で拡張することにより、DNAGPTは汎用的なDNA解析タスクを処理できる。
論文 参考訳(メタデータ) (2023-07-11T06:30:43Z) - Adaptive Gated Graph Convolutional Network for Explainable Diagnosis of
Alzheimer's Disease using EEG Data [9.601125513491835]
本稿では,適応ゲートグラフ畳み込みネットワーク(AGGCN)を提案する。
AGGCNは、畳み込みに基づくノード特徴増強と相関に基づくパワースペクトル密度類似度の尺度を組み合わせることで、グラフ構造を適応的に学習する。
論文 参考訳(メタデータ) (2023-04-12T14:13:09Z) - DynGFN: Towards Bayesian Inference of Gene Regulatory Networks with
GFlowNets [81.75973217676986]
遺伝子調節ネットワーク(GRN)は、遺伝子発現と細胞機能を制御する遺伝子とその産物間の相互作用を記述する。
既存の方法は、チャレンジ(1)、ダイナミックスから循環構造を識別すること、あるいはチャレンジ(2)、DAGよりも複雑なベイズ後部を学習することに焦点を当てるが、両方ではない。
本稿では、RNAベロシティ技術を用いて遺伝子発現の「速度」を推定できるという事実を活用し、両方の課題に対処するアプローチを開発する。
論文 参考訳(メタデータ) (2023-02-08T16:36:40Z) - Predicting Biomedical Interactions with Probabilistic Model Selection
for Graph Neural Networks [5.156812030122437]
現在の生物学的ネットワークは、ノイズ、スパース、不完全であり、そのような相互作用の実験的同定には時間と費用がかかる。
ディープグラフニューラルネットワークは、グラフ構造データモデリングの有効性を示し、バイオメディカル相互作用予測において優れた性能を達成した。
提案手法により,グラフ畳み込みネットワークは,その深度を動的に適応し,対話数の増加に対応することができる。
論文 参考訳(メタデータ) (2022-11-22T20:44:28Z) - What Makes Graph Neural Networks Miscalibrated? [48.00374886504513]
グラフニューラルネットワーク(GNN)の校正特性に関する系統的研究を行う。
我々は,GNNのキャリブレーションに影響を与える5つの要因を同定する: 一般信頼度傾向, ノード単位の予測分布の多様性, 訓練ノード間距離, 相対信頼度, 近傍類似度。
我々は,グラフニューラルネットワークのキャリブレーションに適した新しいキャリブレーション手法であるグラフアテンション温度スケーリング(GATS)を設計する。
論文 参考訳(メタデータ) (2022-10-12T16:41:42Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
グラフ畳み込みネットワーク(GCN)は,豊富な情報を持つ複雑なグラフにおいて,ノードの特徴と位相構造を最適に統合できるかどうかを検討する。
半教師付き分類(AM-GCN)のための適応型マルチチャネルグラフ畳み込みネットワークを提案する。
実験の結果,AM-GCNはノードの特徴とトポロジ的構造の両方から最も相関性の高い情報を抽出することがわかった。
論文 参考訳(メタデータ) (2020-07-05T08:16:03Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
35,000以上のニューラルネットワークモデルをトレーニングし、一般的な成果化技術を駆使しています。
RNA-seqは128以上のサブセットであっても非常に冗長で情報的であることがわかった。
論文 参考訳(メタデータ) (2020-04-30T20:42:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。