論文の概要: Injecting Hierarchical Biological Priors into Graph Neural Networks for Flow Cytometry Prediction
- arxiv url: http://arxiv.org/abs/2405.18507v4
- Date: Sat, 27 Jul 2024 22:11:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 22:58:37.468383
- Title: Injecting Hierarchical Biological Priors into Graph Neural Networks for Flow Cytometry Prediction
- Title(参考訳): フローサイトメトリー予測のためのグラフニューラルネットワークへの階層的生物前駆体注入
- Authors: Fatemeh Nassajian Mojarrad, Lorenzo Bini, Thomas Matthes, Stéphane Marchand-Maillet,
- Abstract要約: 本研究では、単一セルのマルチクラス分類のためのグラフニューラルネットワーク(GNN)に階層的な事前知識を注入することを検討する。
本稿では,複数のGNNモデル,すなわちFCHC-GNNに適用可能な階層的なプラグイン手法を提案する。
- 参考スコア(独自算出の注目度): 1.7709249262395883
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the complex landscape of hematologic samples such as peripheral blood or bone marrow derived from flow cytometry (FC) data, cell-level prediction presents profound challenges. This work explores injecting hierarchical prior knowledge into graph neural networks (GNNs) for single-cell multi-class classification of tabular cellular data. By representing the data as graphs and encoding hierarchical relationships between classes, we propose our hierarchical plug-in method to be applied to several GNN models, namely, FCHC-GNN, and effectively designed to capture neighborhood information crucial for single-cell FC domain. Extensive experiments on our cohort of 19 distinct patients, demonstrate that incorporating hierarchical biological constraints boosts performance significantly across multiple metrics compared to baseline GNNs without such priors. The proposed approach highlights the importance of structured inductive biases for gaining improved generalization in complex biological prediction tasks.
- Abstract(参考訳): フローサイトメトリー(FC)データから得られた末梢血や骨髄などの血液学的サンプルの複雑な景観において、細胞レベルでの予測は深刻な課題を呈している。
本研究では、グラフニューラルネットワーク(GNN)に階層的な事前知識を注入して、表層セルデータの単一セルマルチクラス分類を行う。
データをグラフとして表現し,クラス間の階層的関係を符号化することにより,複数のGNNモデル,すなわちFCHC-GNNに適用可能な階層的プラグイン手法を提案する。
19人の異なる患者のコホートに対する大規模な実験により、階層的な生物学的制約を取り入れることによって、複数の指標においてパフォーマンスが著しく向上することが実証された。
提案手法は, 複雑な生物予測タスクにおける一般化向上のための構造的帰納バイアスの重要性を強調した。
関連論文リスト
- FlowCyt: A Comparative Study of Deep Learning Approaches for Multi-Class Classification in Flow Cytometry Benchmarking [1.6712896227173808]
FlowCytは、フローコードされたデータにおいて、マルチクラスのシングルセル分類のための最初の包括的なベンチマークである。
このデータセットは、30人の患者の骨髄サンプルからなり、各細胞は12個のマーカーで特徴づけられる。
論文 参考訳(メタデータ) (2024-02-28T15:01:59Z) - Graph Neural Network approaches for single-cell data: A recent overview [0.3277163122167433]
グラフニューラルネットワーク(GNN)は、遺伝子と細胞間の深いつながりを明らかにすることで、生医学と病気の理解を再構築している。
近年,シングルセルデータに適したGNN手法が注目されている。
このレビューは、GNNがシングルセル分析の中心となる未来を予測している。
論文 参考訳(メタデータ) (2023-10-14T11:09:17Z) - A Comparative Study of Graph Neural Networks for Shape Classification in
Neuroimaging [17.775145204666874]
ニューロイメージングにおける形状分類のための幾何学的深層学習の現状について概説する。
ノード機能としてFPFHを使用することで,GNNの性能が大幅に向上し,アウト・オブ・ディストリビューションデータへの一般化が期待できる。
以上の結果から,アルツハイマー病の分類を応用し,臨床的に有意な課題を確定した。
論文 参考訳(メタデータ) (2022-10-29T19:03:01Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Learnable Filters for Geometric Scattering Modules [64.03877398967282]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2022-08-15T22:30:07Z) - Generalization Guarantee of Training Graph Convolutional Networks with
Graph Topology Sampling [83.77955213766896]
グラフ畳み込みネットワーク(GCN)は近年,グラフ構造化データの学習において大きな成功を収めている。
スケーラビリティ問題に対処するため、Gsの学習におけるメモリと計算コストを削減するため、グラフトポロジサンプリングが提案されている。
本稿では,3層GCNのトレーニング(最大)におけるグラフトポロジサンプリングの最初の理論的正当性について述べる。
論文 参考訳(メタデータ) (2022-07-07T21:25:55Z) - Neuroplastic graph attention networks for nuclei segmentation in
histopathology images [17.30043617044508]
細胞核のセマンティックセグメンテーションのための新しいアーキテクチャを提案する。
このアーキテクチャは、新しい神経可塑性グラフアテンションネットワークで構成されている。
実験的な評価では、我々のフレームワークは最先端のニューラルネットワークのアンサンブルよりも優れています。
論文 参考訳(メタデータ) (2022-01-10T22:19:14Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2020-10-06T01:20:27Z) - EPGAT: Gene Essentiality Prediction With Graph Attention Networks [1.1602089225841632]
グラフ注意ネットワーク(GAT)に基づく本質性予測手法であるEPGATを提案する。
本モデルでは,PPIネットワークから遺伝子必須性のパターンを直接学習し,ノード属性として符号化されたマルチオミクスデータから追加のエビデンスを統合する。
ヒトを含む4種の生物に対するEPGATをベンチマークし、AUCスコア0.78から0.97の範囲で遺伝子本質を正確に予測した。
論文 参考訳(メタデータ) (2020-07-19T13:47:15Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
グラフ畳み込みネットワーク(GCN)は,豊富な情報を持つ複雑なグラフにおいて,ノードの特徴と位相構造を最適に統合できるかどうかを検討する。
半教師付き分類(AM-GCN)のための適応型マルチチャネルグラフ畳み込みネットワークを提案する。
実験の結果,AM-GCNはノードの特徴とトポロジ的構造の両方から最も相関性の高い情報を抽出することがわかった。
論文 参考訳(メタデータ) (2020-07-05T08:16:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。