論文の概要: iDECODe: In-distribution Equivariance for Conformal Out-of-distribution
Detection
- arxiv url: http://arxiv.org/abs/2201.02331v1
- Date: Fri, 7 Jan 2022 05:21:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-10 19:12:08.767169
- Title: iDECODe: In-distribution Equivariance for Conformal Out-of-distribution
Detection
- Title(参考訳): idecode: コンフォーマントアウトオブディストリビューション検出のためのインディストリビューション等分散
- Authors: Ramneet Kaur, Susmit Jha, Anirban Roy, Sangdon Park, Edgar Dobriban,
Oleg Sokolsky, Insup Lee
- Abstract要約: ディープニューラルネットワーク(DNN)のような機械学習手法は、しばしば信頼性の高い誤った予測を生成する。
そこで我々は,共形OOD検出に分配同値を用いたiDECODeを提案する。
画像と音声のデータセットを用いた実験により,iDECODeの有効性を実証し,その結果を得た。
- 参考スコア(独自算出の注目度): 24.518698391381204
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning methods such as deep neural networks (DNNs), despite their
success across different domains, are known to often generate incorrect
predictions with high confidence on inputs outside their training distribution.
The deployment of DNNs in safety-critical domains requires detection of
out-of-distribution (OOD) data so that DNNs can abstain from making predictions
on those. A number of methods have been recently developed for OOD detection,
but there is still room for improvement. We propose the new method iDECODe,
leveraging in-distribution equivariance for conformal OOD detection. It relies
on a novel base non-conformity measure and a new aggregation method, used in
the inductive conformal anomaly detection framework, thereby guaranteeing a
bounded false detection rate. We demonstrate the efficacy of iDECODe by
experiments on image and audio datasets, obtaining state-of-the-art results. We
also show that iDECODe can detect adversarial examples.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)のような機械学習手法は、異なるドメインで成功したにもかかわらず、トレーニングディストリビューション外の入力に高い信頼性で誤った予測を生成することがよく知られている。
安全クリティカルなドメインにDNNを配置するには、DNNがそれらの予測を控えるように、OOD(out-of-distriion)データを検出する必要がある。
OOD検出のためのいくつかの方法が最近開発されたが、まだ改善の余地がある。
そこで我々は,共形OOD検出に分配同値を用いたiDECODeを提案する。
帰納的共形異常検出フレームワークで使用される新規な非整合性尺度と新しい集約法に依存し、従って有界偽検出率を保証する。
画像と音声のデータセットを用いた実験により,iDECODeの有効性を実証し,その結果を得た。
また,iDECODeは敵のサンプルを検出できることを示した。
関連論文リスト
- Hypothesis-Driven Deep Learning for Out of Distribution Detection [0.8191518216608217]
本稿では,新しいサンプルがInDなのかOoDなのかを定量化する仮説駆動型手法を提案する。
細菌のサンプルを学習した深層学習モデルに適応させ,InDとOoDの潜伏反応の解釈的差異を明らかにする。
論文 参考訳(メタデータ) (2024-03-21T01:06:47Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - Window-Based Distribution Shift Detection for Deep Neural Networks [21.73028341299301]
本研究では,データストリームを受信したディープニューラルネットワーク(DNN)の正常動作をモニタリングする場合について検討する。
選択的予測原理を用いて,DNNの分布偏差検出手法を提案する。
我々の新しい検出法は、最先端技術よりもかなり少ない時間を消費しながら、オンパー以上の性能を発揮する。
論文 参考訳(メタデータ) (2022-10-19T21:27:25Z) - Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD
Training Data Estimate a Combination of the Same Core Quantities [104.02531442035483]
本研究の目的は,OOD検出手法の暗黙的なスコアリング機能を識別すると同時に,共通の目的を認識することである。
内分布と外分布の2値差はOOD検出問題のいくつかの異なる定式化と等価であることを示す。
また, 外乱露光で使用される信頼損失は, 理論上最適のスコアリング関数と非自明な方法で異なる暗黙的なスコアリング関数を持つことを示した。
論文 参考訳(メタデータ) (2022-06-20T16:32:49Z) - Model2Detector:Widening the Information Bottleneck for
Out-of-Distribution Detection using a Handful of Gradient Steps [12.263417500077383]
アウト・オブ・ディストリビューション検出は、長いバニラニューラルネットワークを持つ重要な機能である。
推論時間外分布検出の最近の進歩は、これらの問題のいくつかを緩和するのに役立つ。
提案手法は,一般的な画像データセットにおける検出精度において,常に最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-02-22T23:03:40Z) - Out-of-Distribution Detection using Outlier Detection Methods [0.0]
アウト・オブ・ディストリビューション検出(OOD)は、ニューラルネットワークへの異常な入力を扱う。
我々は,OOD分野の特殊手法と同じくらい信頼性の高い異常な入力を検出するために,異常検出アルゴリズムを用いる。
ニューラルネットワークの適応は不要で、検出はモデルのソフトマックススコアに基づいて行われる。
論文 参考訳(メタデータ) (2021-08-18T16:05:53Z) - On the Practicality of Deterministic Epistemic Uncertainty [106.06571981780591]
決定論的不確実性法(DUM)は,分布外データの検出において高い性能を達成する。
DUMが十分に校正されており、現実のアプリケーションにシームレスにスケールできるかどうかは不明だ。
論文 参考訳(メタデータ) (2021-07-01T17:59:07Z) - Statistical Testing for Efficient Out of Distribution Detection in Deep
Neural Networks [26.0303701309125]
本稿では,Deep Neural Networks の Out Of Distribution (OOD) 検出問題を統計的仮説テスト問題として考察する。
このフレームワークに基づいて、低階統計に基づいた新しいOOD手順を提案します。
本手法は,ネットワークパラメータの再トレーニングを行わずに,oodベンチマークの精度が向上した。
論文 参考訳(メタデータ) (2021-02-25T16:14:47Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
ニューラルネットワークの現在のアウト・オブ・ディストリビューション(OOD)検出アルゴリズムは,様々なOOD検出シナリオにおいて不満足な結果をもたらすことを示す。
本稿では,テストデータのバッチを観察した後に検出方法を調整することで,このような「ハード」なOODシナリオがいかに有用かを検討する。
本稿では,テストデータと正規化に人工ラベリング手法を用いて,テストバッチ内のOODサンプルに対してのみ矛盾予測を生成するモデルのアンサンブルを求める手法を提案する。
論文 参考訳(メタデータ) (2020-12-10T16:55:13Z) - NADS: Neural Architecture Distribution Search for Uncertainty Awareness [79.18710225716791]
機械学習(ML)システムは、トレーニングデータとは異なるディストリビューションから来るテストデータを扱う場合、しばしばOoD(Out-of-Distribution)エラーに遭遇する。
既存のOoD検出アプローチはエラーを起こしやすく、時にはOoDサンプルに高い確率を割り当てることもある。
本稿では,すべての不確実性を考慮したアーキテクチャの共通構築ブロックを特定するために,ニューラルアーキテクチャ分布探索(NADS)を提案する。
論文 参考訳(メタデータ) (2020-06-11T17:39:07Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
既存の検出機構は, 分布内およびOOD入力の評価において, 極めて脆弱であることを示す。
ALOE と呼ばれる実効性のあるアルゴリズムを提案する。このアルゴリズムは,逆向きに構築された逆数と外数の両方の例にモデルを公開することにより,堅牢なトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-21T17:46:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。