論文の概要: Out-of-Distribution Detection using Outlier Detection Methods
- arxiv url: http://arxiv.org/abs/2108.08218v1
- Date: Wed, 18 Aug 2021 16:05:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-19 16:44:24.651242
- Title: Out-of-Distribution Detection using Outlier Detection Methods
- Title(参考訳): 異常検出法を用いた分布外検出
- Authors: Jan Diers and Christian Pigorsch
- Abstract要約: アウト・オブ・ディストリビューション検出(OOD)は、ニューラルネットワークへの異常な入力を扱う。
我々は,OOD分野の特殊手法と同じくらい信頼性の高い異常な入力を検出するために,異常検出アルゴリズムを用いる。
ニューラルネットワークの適応は不要で、検出はモデルのソフトマックススコアに基づいて行われる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Out-of-distribution detection (OOD) deals with anomalous input to neural
networks. In the past, specialized methods have been proposed to reject
predictions on anomalous input. We use outlier detection algorithms to detect
anomalous input as reliable as specialized methods from the field of OOD. No
neural network adaptation is required; detection is based on the model's
softmax score. Our approach works unsupervised with an Isolation Forest or with
supervised classifiers such as a Gradient Boosting machine.
- Abstract(参考訳): Out-of-Distribution Detection (OOD)は、ニューラルネットワークへの異常な入力を扱う。
これまで,異常入力の予測を拒否する特殊な手法が提案されてきた。
異常検出アルゴリズムを用いて,oodの分野から特殊手法と同等に信頼性の高い異常入力を検出する。
ニューラルネットワークの適応は不要であり、検出はモデルのソフトマックススコアに基づいている。
このアプローチは,孤立林や勾配昇降機などの教師付き分類器では無監督で機能する。
関連論文リスト
- Can I trust my anomaly detection system? A case study based on explainable AI [0.4416503115535552]
本稿では,変分自己エンコーダ生成モデルに基づく異常検出システムのロバスト性について検討する。
目標は、再構成の違いを利用する異常検知器の実際の性能について、異なる視点を得ることです。
論文 参考訳(メタデータ) (2024-07-29T12:39:07Z) - Out-of-Distribution Detection with a Single Unconditional Diffusion Model [54.15132801131365]
アウト・オブ・ディストリビューション(OOD)検出は、異常サンプルを特定しようとする機械学習において重要なタスクである。
従来、教師なし手法はOOD検出に深い生成モデルを用いていた。
本稿では,単一モデルが多様なタスクに対してOOD検出を行うことができるかどうかを考察する。
論文 参考訳(メタデータ) (2024-05-20T08:54:03Z) - Window-Based Distribution Shift Detection for Deep Neural Networks [21.73028341299301]
本研究では,データストリームを受信したディープニューラルネットワーク(DNN)の正常動作をモニタリングする場合について検討する。
選択的予測原理を用いて,DNNの分布偏差検出手法を提案する。
我々の新しい検出法は、最先端技術よりもかなり少ない時間を消費しながら、オンパー以上の性能を発揮する。
論文 参考訳(メタデータ) (2022-10-19T21:27:25Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - TracInAD: Measuring Influence for Anomaly Detection [0.0]
本稿では,TracInに基づく異常をフラグする新しい手法を提案する。
本研究では,変分オートエンコーダを用いて,テストポイントにおけるトレーニングポイントのサブサンプルの平均的な影響が,異常のプロキシとして有効であることを示す。
論文 参考訳(メタデータ) (2022-05-03T08:20:15Z) - Model2Detector:Widening the Information Bottleneck for
Out-of-Distribution Detection using a Handful of Gradient Steps [12.263417500077383]
アウト・オブ・ディストリビューション検出は、長いバニラニューラルネットワークを持つ重要な機能である。
推論時間外分布検出の最近の進歩は、これらの問題のいくつかを緩和するのに役立つ。
提案手法は,一般的な画像データセットにおける検出精度において,常に最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-02-22T23:03:40Z) - iDECODe: In-distribution Equivariance for Conformal Out-of-distribution
Detection [24.518698391381204]
ディープニューラルネットワーク(DNN)のような機械学習手法は、しばしば信頼性の高い誤った予測を生成する。
そこで我々は,共形OOD検出に分配同値を用いたiDECODeを提案する。
画像と音声のデータセットを用いた実験により,iDECODeの有効性を実証し,その結果を得た。
論文 参考訳(メタデータ) (2022-01-07T05:21:40Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
我々は、アウト・オブ・ディストリビューション(OOD)インプットと敵攻撃(AA)を検出する新しい手法であるDAINを導入する。
本手法は,ニューラルネットワークの内部動作を監視し,活性化分布の密度推定器を学習する。
当社のモデルは,特別なアクセラレータを必要とせずに,効率的な計算とデプロイが可能な単一のGPUでトレーニングすることが可能です。
論文 参考訳(メタデータ) (2021-05-30T22:07:13Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。