論文の概要: Auction-Based Ex-Post-Payment Incentive Mechanism Design for Horizontal
Federated Learning with Reputation and Contribution Measurement
- arxiv url: http://arxiv.org/abs/2201.02410v1
- Date: Fri, 7 Jan 2022 11:44:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-10 14:51:56.078253
- Title: Auction-Based Ex-Post-Payment Incentive Mechanism Design for Horizontal
Federated Learning with Reputation and Contribution Measurement
- Title(参考訳): 評価と貢献度測定を併用した水平連関学習のためのオークション型前払いインセンティブ機構設計
- Authors: Jingwen Zhang, Yuezhou Wu, Rong Pan
- Abstract要約: フェデレーション学習は、分散データを持つデバイス間でモデルをトレーニングし、プライバシを保護し、集中型MLと同様のモデルを取得する。
評価とコントリビューション測定を併用した水平連合学習のためのオークションベースのインセンティブメカニズムを設計する。
- 参考スコア(独自算出の注目度): 9.503584357135832
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning trains models across devices with distributed data, while
protecting the privacy and obtaining a model similar to that of centralized ML.
A large number of workers with data and computing power are the foundation of
federal learning. However, the inevitable costs prevent self-interested workers
from serving for free. Moreover, due to data isolation, task publishers lack
effective methods to select, evaluate and pay reliable workers with
high-quality data. Therefore, we design an auction-based incentive mechanism
for horizontal federated learning with reputation and contribution measurement.
By designing a reasonable method of measuring contribution, we establish the
reputation of workers, which is easy to decline and difficult to improve.
Through reverse auctions, workers bid for tasks, and the task publisher selects
workers combining reputation and bid price. With the budget constraint, winning
workers are paid based on performance. We proved that our mechanism satisfies
the individual rationality of the honest worker, budget feasibility,
truthfulness, and computational efficiency.
- Abstract(参考訳): フェデレーション学習は、分散データを持つデバイス間でモデルをトレーニングし、プライバシを保護し、集中型MLに似たモデルを取得する。
データと計算能力を持つ多くの労働者が連邦学習の基礎となっている。
しかし、避けられないコストは、自給自足労働者が無償で奉仕することを妨げる。
さらに、データ分離のため、タスクパブリッシャは、高品質なデータで信頼できる労働者を選択し、評価し、報酬を支払う効果的な方法が欠けている。
そこで我々は,評価とコントリビューション測定による水平連合学習のためのオークションベースのインセンティブメカニズムを設計する。
貢献度を測定する合理的な方法を設計することにより,作業者の評価を確立し,その評価は低下し易く,改善が困難である。
逆オークションにより、労働者はタスクを入札し、タスクパブリッシャは評判と入札価格を組み合わせた労働者を選択する。
予算制約により、入賞労働者はパフォーマンスに基づいて支払われる。
我々のメカニズムは、正直な労働者の個々の合理性、予算実現可能性、真理性、計算効率を満たすことを証明した。
関連論文リスト
- Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
フェデレートアンラーニング(Federated Unlearning)は、分散クライアントのデータオーナシップを保護するための、有望なパラダイムである。
既存の作業では、分散クライアントからの履歴モデルパラメータを保持するために、中央サーバが必要である。
本稿では,ブロックチェーンによる信頼性の高いフェデレーションアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-29T07:04:48Z) - Incentivizing Massive Unknown Workers for Budget-Limited Crowdsensing:
From Off-Line and On-Line Perspectives [31.24314338983544]
オフラインのコンテキスト認識型CMABベースのインセンティブ(CACI)機構を提案する。
また、このアイデアを、未知の労働者がシステムに参加または離脱するオンライン設定に拡張する。
論文 参考訳(メタデータ) (2023-09-21T14:30:42Z) - Efficient Core-selecting Incentive Mechanism for Data Sharing in
Federated Learning [0.12289361708127873]
フェデレーテッド・ラーニング(Federated Learning)は、参加者のデータを使って改善されたグローバルモデルをトレーニングする分散機械学習システムである。
データを真に入力し、安定した協力を促進するインセンティブメカニズムの確立は、検討すべき重要な問題となっている。
本稿では,サンプリング近似に基づく効率的なコア選択機構を提案する。
論文 参考訳(メタデータ) (2023-09-21T01:47:39Z) - Cost-efficient Crowdsourcing for Span-based Sequence Labeling: Worker Selection and Data Augmentation [30.179968217703635]
本稿では,新たなクラウドソーシング作業者選択アルゴリズムを導入し,アノテーションの品質向上とコスト削減を図る。
提案アルゴリズムは,作業者選択にコンビニアル・マルチアーマッド・バンドイット(CMAB)アプローチ,コスト効率のよいフィードバック機構を利用する。
論文 参考訳(メタデータ) (2023-05-11T09:40:24Z) - Semantic Information Marketing in The Metaverse: A Learning-Based
Contract Theory Framework [68.8725783112254]
仮想サービスプロバイダ(VSP)によるインセンティブのメカニズム設計の問題に対処し,センサデータ販売にIoTデバイスを採用。
帯域幅が限られているため,センサIoTデバイスによる配信データを削減するためにセマンティック抽出アルゴリズムを提案する。
本稿では,新しい反復型契約設計を提案し,マルチエージェント強化学習(MARL)の新たな変種を用いて,モデル付き多次元契約問題の解法を提案する。
論文 参考訳(メタデータ) (2023-02-22T15:52:37Z) - Welfare and Fairness Dynamics in Federated Learning: A Client Selection
Perspective [1.749935196721634]
Federated Learning(FL)は、分散コンピューティングデバイスが共有学習モデルのトレーニングを可能にする、プライバシ保護学習技術である。
公正さやインセンティブといった顧客に対する経済的配慮は、まだ完全には検討されていない。
低品質なクライアントを除去するためのクライアント選択プロセスと、公正な報酬配分を保証するための送金プロセスを含む、新たなインセンティブ機構を提案する。
論文 参考訳(メタデータ) (2023-02-17T16:31:19Z) - Understanding Information Disclosure from Secure Computation Output: A Study of Average Salary Computation [58.74407460023331]
関数結果の観察からプライベート入力に関する情報開示を定量化することが,本研究の課題である。
ボストン市における男女賃金格差の研究に動機づけられたこの研究は、給与の平均計算に焦点を当てる。
論文 参考訳(メタデータ) (2022-09-21T15:59:48Z) - Mechanisms that Incentivize Data Sharing in Federated Learning [90.74337749137432]
我々は、データ共有の利点が完全に損なわれているような、ナイーブなスキームが破滅的なフリーライディングのレベルにどのように結びつくかを示す。
次に,各エージェントが生成するデータ量を最大化する精度形成機構を導入する。
論文 参考訳(メタデータ) (2022-07-10T22:36:52Z) - VFed-SSD: Towards Practical Vertical Federated Advertising [53.08038962443853]
本稿では,2つの制限を緩和する半教師付き分割蒸留フレームワーク VFed-SSD を提案する。
具体的には,垂直分割された未ラベルデータを利用する自己教師型タスクMatchedPair Detection (MPD) を開発する。
当社のフレームワークは,デプロイコストの最小化と大幅なパフォーマンス向上を図った,リアルタイム表示広告のための効率的なフェデレーション強化ソリューションを提供する。
論文 参考訳(メタデータ) (2022-05-31T17:45:30Z) - Online Auction-Based Incentive Mechanism Design for Horizontal Federated
Learning with Budget Constraint [9.503584357135832]
フェデレートされた学習は、データ分離を持つすべての関係者が協力的かつ効率的にモデルをトレーニングすることを可能にする。
高品質なモデルを得るには、より高品質な労働者をデータと計算能力で動機付けるためのインセンティブメカニズムが必要である。
本稿では,予算制約を伴う水平的フェデレーション学習のための,逆オークションに基づくオンラインインセンティブ機構を提案する。
論文 参考訳(メタデータ) (2022-01-22T13:37:52Z) - Byzantine-Robust Learning on Heterogeneous Datasets via Bucketing [55.012801269326594]
ビザンチンの堅牢な分散学習では、中央サーバは、複数のワーカーに分散したデータよりも、機械学習モデルを訓練したい。
これらの労働者のごく一部は、所定のアルゴリズムから逸脱し、任意のメッセージを送ることができる。
本稿では,既存のロバストなアルゴリズムを無視可能な計算コストでヘテロジニアスなデータセットに適応させる,シンプルなバケット方式を提案する。
論文 参考訳(メタデータ) (2020-06-16T17:58:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。