Efficient Source of Shaped Single Photons Based on an Integrated Diamond
Nanophotonic System
- URL: http://arxiv.org/abs/2201.02731v2
- Date: Thu, 28 Jul 2022 15:57:09 GMT
- Title: Efficient Source of Shaped Single Photons Based on an Integrated Diamond
Nanophotonic System
- Authors: Erik N. Knall, Can M. Knaut, Rivka Bekenstein, Daniel R. Assumpcao,
Pavel L. Stroganov, Wenjie Gong, Yan Qi Huan, Pieter-Jan Stas, Bartholomeus
Machielse, Michelle Chalupnik, David Levonian, Aziza Suleymanzade, Ralf
Riedinger, Hongkun Park, Marko Lon\v{c}ar, Mihir K. Bhaskar, Mikhail D. Lukin
- Abstract summary: An efficient source of shaped single photons can be directly integrated with optical fiber networks and quantum memories.
We demonstrate a deterministic source of arbitrarily temporally shaped single-photon pulses with high efficiency.
This system could be used as a resource for robust transmission and processing of quantum information.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An efficient, scalable source of shaped single photons that can be directly
integrated with optical fiber networks and quantum memories is at the heart of
many protocols in quantum information science. We demonstrate a deterministic
source of arbitrarily temporally shaped single-photon pulses with high
efficiency (detection efficiency = 14.9%) and purity ($g^{(2)}(0) = 0.0168$)
and streams of up to 11 consecutively detected single photons using a
silicon-vacancy center in a highly directional fiber-integrated diamond
nanophotonic cavity. Combined with previously demonstrated spin-photon
entangling gates, this system enables on-demand generation of streams of
correlated photons such as cluster states and could be used as a resource for
robust transmission and processing of quantum information.
Related papers
- Photonic quantum computing on thin-film lithium niobate: Part I Design
of an efficient heralded single photon source co-integrated with
superconducting detectors [0.0]
Photonic quantum computers are one of the primary candidates for fault-tolerant quantum computation.
To build a practical quantum computer, thousands to millions of such sources are required.
We propose a unique single-photon source design on a thin-film lithium niobate platform co-integrated with superconducting nanowire single-photon detectors.
arXiv Detail & Related papers (2023-11-15T21:51:12Z) - All-Optical Spin Initialization via a Cavity Broadened Optical
Transition in On-Chip Hybrid Quantum Photonics [33.607979748917465]
Hybrid quantum photonic systems connect classical photonics to the quantum world and promise to deliver efficient light-matter quantum interfaces.
We demonstrate all-optical readout of the electronic spin of a negatively-charged silicon-vacancy center in a nanodiamond coupled to a silicon nitride photonic crystal cavity.
Our results mark an important step towards the realization of a hybrid spin-photon interface based on silicon nitride photonics and the silicon-vacancy center's electron spin in nanodiamonds with potential use for quantum networks, quantum communication and distributed quantum computation.
arXiv Detail & Related papers (2023-08-29T18:03:11Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Purcell enhancement of single-photon emitters in silicon [68.8204255655161]
Individual spins that are coupled to telecommunication photons offer unique promise for distributed quantum information processing.
We implement such an interface by integrating erbium dopants into a nanophotonic silicon resonator.
We observe optical Rabi oscillations and single-photon emission with a 78-fold Purcell enhancement.
arXiv Detail & Related papers (2023-01-18T19:38:38Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - On-chip single-photon subtraction by individual silicon vacancy centers
in a laser-written diamond waveguide [48.7576911714538]
Laser-written diamond photonics offers three-dimensional fabrication capabilities and large mode-field diameters matched to fiber optic technology.
To realize large cooperativities, we combine excitation of single shallow-implanted silicon vacancy centers via large numerical aperture optics.
We demonstrate single-emitter extinction measurements with a cooperativity of 0.153 and a beta factor of 13% yielding 15.3% as lower bound for the quantum efficiency of a single emitter.
arXiv Detail & Related papers (2021-11-02T16:01:15Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Scalable integrated single-photon source [0.0]
Photonic qubits are key enablers for quantum-information processing deployable across a distributed quantum network.
A main challenge is to overcome noise and decoherence processes in order to reach the benchmarks on generation efficiency and photon indistinguishability.
We report on the realization of a deterministic single-photon source featuring near-unity indistinguishability using a quantum dot in an 'on-chip'
The device produces long strings of $>100$ single photons without any observable decrease in the mutual indistinguishability between photons.
arXiv Detail & Related papers (2020-03-19T17:32:04Z) - On-demand indistinguishable single photons from an efficient and pure
source based on a Rydberg ensemble [48.879585399382435]
Single photons coupled to atomic systems have shown to be a promising platform for developing quantum technologies.
Yet a bright on-demand, highly pure and highly indistinguishable single-photon source compatible with atomic platforms is lacking.
In this work, we demonstrate such a source based on a strongly interacting Rydberg system.
arXiv Detail & Related papers (2020-03-04T17:16:56Z) - On-chip deterministic operation of quantum dots in dual-mode waveguides
for a plug-and-play single-photon source [0.0]
A deterministic source of coherent single photons is an enabling device of quantum-information processing.
We present a novel nanophotonic device that enables deterministic pulsed excitation of QDs through the waveguide.
We demonstrate a coherent single-photon source that simultaneously achieves high-purity.
arXiv Detail & Related papers (2020-01-29T08:09:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.