Photonic quantum computing on thin-film lithium niobate: Part I Design
of an efficient heralded single photon source co-integrated with
superconducting detectors
- URL: http://arxiv.org/abs/2311.09398v1
- Date: Wed, 15 Nov 2023 21:51:12 GMT
- Title: Photonic quantum computing on thin-film lithium niobate: Part I Design
of an efficient heralded single photon source co-integrated with
superconducting detectors
- Authors: A.Sayem
- Abstract summary: Photonic quantum computers are one of the primary candidates for fault-tolerant quantum computation.
To build a practical quantum computer, thousands to millions of such sources are required.
We propose a unique single-photon source design on a thin-film lithium niobate platform co-integrated with superconducting nanowire single-photon detectors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Photonic quantum computers are currently one of the primary candidates for
fault-tolerant quantum computation. At the heart of the photonic quantum
computation lies the strict requirement for suitable quantum sources e.g. high
purity, high brightness single photon sources. To build a practical quantum
computer, thousands to millions of such sources are required. In this article,
we theoretically propose a unique single-photon source design on a thin-film
lithium niobate (TFLN) platform co-integrated with superconducting nanowire
single-photon detectors. We show that with a judicial design of single photon
source using thin film periodically poled lithium waveguides (PPLN),
back-illuminated grating couplers (GCs) and directly bonded or integrated
cavity coupled superconducting nanowire single-photon detectors (SNSPDs) can
lead to a simple but practical high efficiency heralded single-photon source
using the current fabrication technology. Such a device will eliminate the
requirement of out coupling of the generated photons and can lead to a fully
integrated solution. The proposed design can be useful for fusion-based quantum
computation and for multiplexed single photon sources and also for efficient
on-chip generation and detection of squeezed light.
Related papers
- Single-photon detectors on arbitrary photonic substrates [2.143182930148198]
Superconducting nanowire single photon detectors (SNSPDs) are the leading detector technology for fiber and integrated photonic applications.
Here, we introduce a method based on transfer printing that overcomes these constraints and allows for the integration of SNSPDs onto arbitrary photonic substrates.
arXiv Detail & Related papers (2024-09-12T21:58:05Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Efficient Source of Shaped Single Photons Based on an Integrated Diamond
Nanophotonic System [0.0]
An efficient source of shaped single photons can be directly integrated with optical fiber networks and quantum memories.
We demonstrate a deterministic source of arbitrarily temporally shaped single-photon pulses with high efficiency.
This system could be used as a resource for robust transmission and processing of quantum information.
arXiv Detail & Related papers (2022-01-08T02:12:24Z) - On-demand source of dual-rail photon pairs based on chiral interaction
in a nanophotonic waveguide [2.3776015607838747]
Entanglement is the fuel of advanced quantum technology.
In photonics, entanglement has traditionally been generated probabilistically.
We propose and experimentally realize an on-demand source of dual-rail photon pairs.
arXiv Detail & Related papers (2021-09-08T09:39:55Z) - Single photon emission from individual nanophotonic-integrated colloidal
quantum dots [45.82374977939355]
Solution processible colloidal quantum dots hold great promise for realizing single-photon sources embedded into scalable quantum technology platforms.
We report on integrating individual colloidal core-shell quantum dots into a nanophotonic network that allows for excitation and efficient collection of single-photons via separate waveguide channels.
arXiv Detail & Related papers (2021-04-23T22:14:17Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Scalable integrated single-photon source [0.0]
Photonic qubits are key enablers for quantum-information processing deployable across a distributed quantum network.
A main challenge is to overcome noise and decoherence processes in order to reach the benchmarks on generation efficiency and photon indistinguishability.
We report on the realization of a deterministic single-photon source featuring near-unity indistinguishability using a quantum dot in an 'on-chip'
The device produces long strings of $>100$ single photons without any observable decrease in the mutual indistinguishability between photons.
arXiv Detail & Related papers (2020-03-19T17:32:04Z) - On-chip deterministic operation of quantum dots in dual-mode waveguides
for a plug-and-play single-photon source [0.0]
A deterministic source of coherent single photons is an enabling device of quantum-information processing.
We present a novel nanophotonic device that enables deterministic pulsed excitation of QDs through the waveguide.
We demonstrate a coherent single-photon source that simultaneously achieves high-purity.
arXiv Detail & Related papers (2020-01-29T08:09:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.