論文の概要: Border Control and Use of Biometrics: Reasons Why the Right to Privacy
Can Not Be Absolute
- arxiv url: http://arxiv.org/abs/2201.03410v1
- Date: Mon, 10 Jan 2022 15:46:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-01 19:45:31.158344
- Title: Border Control and Use of Biometrics: Reasons Why the Right to Privacy
Can Not Be Absolute
- Title(参考訳): バイオメトリックスの国境管理と利用:なぜプライバシーの権利が絶対的でないのか
- Authors: Mohamed Abomhara, Sule Yildirim Yayilgan, Marina Shalaginova, Zoltan
Szekely
- Abstract要約: 本稿では,国境管理における生体データの利用に関するプライバシー権の絶対性に関する懸念について論じる。
この議論は、なぜプライバシーが異なる観点から絶対的にできないのかを説明している。
- 参考スコア(独自算出の注目度): 0.711144397510333
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper discusses concerns pertaining to the absoluteness of the right to
privacy regarding the use of biometric data for border control. The discussion
explains why privacy cannot be absolute from different points of view,
including privacy versus national security, privacy properties conflicting with
border risk analysis, and Privacy by Design (PbD) and engineering design
challenges.
- Abstract(参考訳): 本稿では,国境管理における生体データの利用に関して,プライバシー権の絶対性に関する考察を行う。
この議論では、プライバシと国家のセキュリティ、境界リスク分析と矛盾するプライバシプロパティ、pbd(プライバシ・バイ・デザイン)、エンジニアリング設計の課題など、プライバシが異なる観点から絶対できない理由が説明されている。
関連論文リスト
- Differential Privacy Overview and Fundamental Techniques [63.0409690498569]
この章は、"Differential Privacy in Artificial Intelligence: From Theory to Practice"という本の一部である。
まず、データのプライバシ保護のためのさまざまな試みについて説明し、その失敗の場所と理由を強調した。
次に、プライバシ保護データ分析の領域を構成する重要なアクター、タスク、スコープを定義する。
論文 参考訳(メタデータ) (2024-11-07T13:52:11Z) - Enhancing Feature-Specific Data Protection via Bayesian Coordinate Differential Privacy [55.357715095623554]
ローカル微分プライバシー(LDP)は、ユーザーが外部の関係者を信頼することなく、強力なプライバシー保証を提供する。
本稿では,ベイジアン・フレームワークであるベイジアン・コーディネート・ディファレンシャル・プライバシ(BCDP)を提案する。
論文 参考訳(メタデータ) (2024-10-24T03:39:55Z) - Privacy Checklist: Privacy Violation Detection Grounding on Contextual Integrity Theory [43.12744258781724]
単純なパターンマッチングではなく、推論問題としてプライバシー問題を定式化します。
我々は、社会的アイデンティティ、プライベート属性、および既存のプライバシー規則を網羅する、最初の包括的なチェックリストを開発する。
論文 参考訳(メタデータ) (2024-08-19T14:48:04Z) - GoldCoin: Grounding Large Language Models in Privacy Laws via Contextual Integrity Theory [44.297102658873726]
これまでの研究では、さまざまなプライバシー攻撃、防御、評価を狭義に定義されたパターンの中で探索することで、プライバシを研究する。
我々は,プライバシ違反を評価する司法法において,LLMを効果的に活用するための新しい枠組みであるGoldCoinを紹介した。
我々のフレームワークは、コンテキスト整合性の理論をブリッジとして活用し、関連するプライバシー法に基づく多数の合成シナリオを作成する。
論文 参考訳(メタデータ) (2024-06-17T02:27:32Z) - A Critical Take on Privacy in a Datafied Society [0.0]
私は、プライバシー擁護者が提示するオンラインのプライバシーと慣用性の欠如について、いくつかの側面を分析します。
データフィケーションが人間の行動に与える影響、オンラインプライバシの基盤における市場志向の前提、そして新たな適応戦略について論じる。
潜在的な問題となる未来を垣間見るために、EU、英国、および中国のジェネレーティブAIポリシーに関するプライバシー関連の側面に関する議論が提供されている。
論文 参考訳(メタデータ) (2023-08-03T11:45:18Z) - A Randomized Approach for Tight Privacy Accounting [63.67296945525791]
推定検証リリース(EVR)と呼ばれる新しい差分プライバシーパラダイムを提案する。
EVRパラダイムは、まずメカニズムのプライバシパラメータを推定し、その保証を満たすかどうかを確認し、最後にクエリ出力を解放する。
我々の実証的な評価は、新たに提案されたEVRパラダイムが、プライバシ保護機械学習のユーティリティプライバシトレードオフを改善することを示している。
論文 参考訳(メタデータ) (2023-04-17T00:38:01Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
DPニューラルネットワークにおけるオブジェクトごとの規範と個人のプライバシ損失との関係について検討する。
プライバシ・ロス・インプット・サセプティビリティ(PLIS)と呼ばれる新しい指標を導入し、被験者のプライバシ・ロスを入力属性に適応させることを可能にした。
論文 参考訳(メタデータ) (2022-11-18T11:39:03Z) - Algorithms with More Granular Differential Privacy Guarantees [65.3684804101664]
我々は、属性ごとのプライバシー保証を定量化できる部分微分プライバシー(DP)について検討する。
本研究では,複数の基本データ分析および学習タスクについて検討し,属性ごとのプライバシパラメータが個人全体のプライバシーパラメータよりも小さい設計アルゴリズムについて検討する。
論文 参考訳(メタデータ) (2022-09-08T22:43:50Z) - The Evolving Path of "the Right to Be Left Alone" - When Privacy Meets
Technology [0.0]
本稿では,プライバシエコシステムの新たなビジョンとして,プライバシの次元,関連するユーザの期待,プライバシ違反,変化要因を導入することを提案する。
プライバシー問題に取り組むための有望なアプローチは, (i) 効果的なプライバシメトリクスの識別, (ii) プライバシに準拠したアプリケーションを設計するためのフォーマルなツールの採用という,2つの方向に移行している,と私たちは信じています。
論文 参考訳(メタデータ) (2021-11-24T11:27:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。