Private Set Intersection with Delegated Blind Quantum Computing
- URL: http://arxiv.org/abs/2201.03496v1
- Date: Mon, 10 Jan 2022 17:53:41 GMT
- Title: Private Set Intersection with Delegated Blind Quantum Computing
- Authors: Michele Amoretti
- Abstract summary: We propose a protocol that solves the server-aided PSI problem using delegated blind quantum computing.
The proposed protocol is correct, secure and blind against a malicious server.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Private set intersection is an important problem with implications in many
areas, ranging from remote diagnostics to private contact discovery. In this
work, we consider the case of two-party PSI in the honest-but-curious setting.
We propose a protocol that solves the server-aided PSI problem using delegated
blind quantum computing. More specifically, the proposed protocol allows Alice
and Bob (who do not have any quantum computational resources or quantum memory)
to interact with Steve (who has a quantum computer) in order for Alice and Bob
to obtain set intersection such that privacy is preserved. In particular, Steve
learns nothing about the clients' input, output, or desired computation. The
proposed protocol is correct, secure and blind against a malicious server, and
characterized by a quantum communication complexity that is linear in the input
size.
Related papers
- Blind quantum machine learning with quantum bipartite correlator [13.533591812956018]
We introduce novel blind quantum machine learning protocols based on the quantum bipartite correlator algorithm.
Our protocols have reduced communication overhead while preserving the privacy of data from untrusted parties.
arXiv Detail & Related papers (2023-10-19T16:42:32Z) - Quantum advantage in a unified scenario and secure detection of
resources [55.2480439325792]
We consider a single task to study different approaches of having quantum advantage.
We show that the optimal success probability in the overall process for a qubit communication might be higher than that for a cbit communication.
arXiv Detail & Related papers (2023-09-22T23:06:20Z) - Delegated variational quantum algorithms based on quantum homomorphic
encryption [69.50567607858659]
Variational quantum algorithms (VQAs) are one of the most promising candidates for achieving quantum advantages on quantum devices.
The private data of clients may be leaked to quantum servers in such a quantum cloud model.
A novel quantum homomorphic encryption (QHE) scheme is constructed for quantum servers to calculate encrypted data.
arXiv Detail & Related papers (2023-01-25T07:00:13Z) - Oblivious Quantum Computation and Delegated Multiparty Quantum
Computation [61.12008553173672]
We propose a new concept, oblivious computation quantum computation, where secrecy of the input qubits and the program to identify the quantum gates are required.
Exploiting quantum teleportation, we propose a two-server protocol for this task.
Also, we discuss delegated multiparty quantum computation, in which, several users ask multiparty quantum computation to server(s) only using classical communications.
arXiv Detail & Related papers (2022-11-02T09:01:33Z) - Classical verification of quantum depth [1.8613536568358358]
We present two protocols for classical verification of quantum depth.
Our first protocol certifies the depth of the target machine with information theoretic security and nearly optimal separation.
Our second protocol certifies the quantum depth of a single device based on quantum hardness of learning with errors.
arXiv Detail & Related papers (2022-05-10T03:55:24Z) - Quantum secure dialogue with quantum encryption [0.0]
We propose a novel approach for sharing the initial quantum state privately between communicators.
The proposed protocol uses EPR pairs as the private quantum key to encrypt and decrypt the traveling photons.
The information-theoretical efficiency of the proposed protocol is nearly 100%, much higher than previous information leakage resistant quantum dialogue protocols.
arXiv Detail & Related papers (2022-05-04T04:05:49Z) - Quantum cryptography with classical communication: parallel remote state
preparation for copy-protection, verification, and more [125.99533416395765]
Many cryptographic primitives are two-party protocols, where one party, Bob, has full quantum computational capabilities, and the other party, Alice, is only required to send random BB84 states to Bob.
We show how such protocols can generically be converted to ones where Alice is fully classical, assuming that Bob cannot efficiently solve the LWE problem.
This means that all communication between (classical) Alice and (quantum) Bob is classical, yet they can still make use of cryptographic primitives that would be impossible if both parties were classical.
arXiv Detail & Related papers (2022-01-31T18:56:31Z) - Quantum secure direct communication with private dense coding using
general preshared quantum state [59.99354397281036]
We study secure direct communication by using a general preshared quantum state and a generalization of dense coding.
For a practical application, we propose a concrete protocol and derive an upper bound of information leakage.
arXiv Detail & Related papers (2021-12-30T16:12:07Z) - Delegating Multi-Party Quantum Computations vs. Dishonest Majority in
Two Quantum Rounds [0.0]
Multi-Party Quantum Computation (MPQC) has attracted a lot of attention as a potential killer-app for quantum networks.
We present a composable protocol achieving blindness and verifiability even in the case of a single honest client.
arXiv Detail & Related papers (2021-02-25T15:58:09Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Succinct Blind Quantum Computation Using a Random Oracle [0.8702432681310399]
We give a new universal blind quantum computation protocol.
The protocol's first phase is succinct, that is, its complexity is independent of circuit size.
arXiv Detail & Related papers (2020-04-27T07:47:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.