A classical formulation of quantum theory?
- URL: http://arxiv.org/abs/2201.03620v1
- Date: Mon, 10 Jan 2022 20:06:12 GMT
- Title: A classical formulation of quantum theory?
- Authors: William F. Braasch Jr., William K. Wootters
- Abstract summary: We obtain quantum theory only by combining a collection of restricted classical pictures.
Our main challenge in this paper is to find a simple way of characterizing the allowed sets of classical pictures.
We present one promising approach to this problem and show how it works out for the case of a single qubit.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore a particular way of reformulating quantum theory in classical
terms, starting with phase space rather than Hilbert space, and with actual
probability distributions rather than quasiprobabilities. The classical picture
we start with is epistemically restricted, in the spirit of a model introduced
by Spekkens. We obtain quantum theory only by combining a collection of
restricted classical pictures. Our main challenge in this paper is to find a
simple way of characterizing the allowed sets of classical pictures. We present
one promising approach to this problem and show how it works out for the case
of a single qubit.
Related papers
- Operationally classical simulation of quantum states [41.94295877935867]
A classical state-preparation device cannot generate superpositions and hence its emitted states must commute.
We show that no such simulation exists, thereby certifying quantum coherence.
Our approach is a possible avenue to understand how and to what extent quantum states defy generic models based on classical devices.
arXiv Detail & Related papers (2025-02-03T15:25:03Z) - Kochen-Specker for many qubits and the classical limit [55.2480439325792]
It is shown that quantum and classical predictions converge as the number of qubits is increases to the macroscopic scale.
This way to explain the classical limit concurs with, and improves, a result previously reported for GHZ states.
arXiv Detail & Related papers (2024-11-26T22:30:58Z) - The Quantum Gaussian-Schell Model: A Link Between Classical and Quantum Optics [0.0]
We show the extraction of the constituent multiphoton quantum systems of a partially coherent light field.
Our findings establish a fundamental bridge between the classical and quantum worlds.
arXiv Detail & Related papers (2024-03-14T21:00:05Z) - Photonic implementation of the quantum Morra game [69.65384453064829]
We study a faithful translation of a two-player quantum Morra game, which builds on previous work by including the classical game as a special case.
We propose a natural deformation of the game in the quantum regime in which Alice has a winning advantage, breaking the balance of the classical game.
We discuss potential applications of the quantum Morra game to the study of quantum information and communication.
arXiv Detail & Related papers (2023-11-14T19:41:50Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Entanglement of Classical and Quantum Short-Range Dynamics in Mean-Field
Systems [0.0]
We show the emergence of classical dynamics for very general quantum lattice systems with mean-field interactions.
This leads to a theoretical framework in which the classical and quantum worlds are entangled.
arXiv Detail & Related papers (2021-03-11T15:23:59Z) - Objective trajectories in hybrid classical-quantum dynamics [0.0]
We introduce several toy models in which to study hybrid classical-quantum evolution.
We present an unravelling approach to calculate the dynamics, and provide code to numerically simulate it.
arXiv Detail & Related papers (2020-11-11T19:00:34Z) - Classical limit of quantum mechanics for damped driven oscillatory
systems: Quantum-classical correspondence [0.0]
We develop a quantum formalism on the basis of a linear-invariant theorem.
We illustrate the correspondence of the quantum energy with the classical one in detail.
arXiv Detail & Related papers (2020-10-18T12:12:01Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.