Quantum interference in finite-size mesoscopic rings
- URL: http://arxiv.org/abs/2201.04390v1
- Date: Wed, 12 Jan 2022 09:52:59 GMT
- Title: Quantum interference in finite-size mesoscopic rings
- Authors: G. P. Papari, V. M. Fomin
- Abstract summary: Ginzburg-Landau theory is used to model the order parameter of a finite-size mesoscopic ring.
The magnetic flux breaks the symmetry of currents between input and output stubs by means of an induced spatial ordering upon diamagnetic and paramagnetic supercurrents circulating in the ring.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Ginzburg-Landau theory is used to model the order parameter of a
finite-size mesoscopic ring to investigate the effects of the onset of
screening currents on the transport of incoming ones. The magnetic flux breaks
the symmetry of currents between input and output stubs by means of an induced
spatial ordering upon diamagnetic and paramagnetic supercurrents circulating in
the ring. The distribution of those screening currents drives the interference
of incoming/outgoing supercurrents resulting into a sinusoidal variation of
resistance as a function of the magnetic flux even if the density of
quasiparticles is not modified by the external magnetic field.
Related papers
- Magnetoresistance oscillations induced by geometry in a two-dimensional quantum ring [0.0]
We consider a GaAs device having an average radius of $800hspace0.05cmtextnm$ in different regimes of subband occupation at non-zero temperature.
We explore how the modified surface affects the Van-Hoove conductance singularities and the magnetoresistance interference patterns resulting from the Aharonov-Bohm oscillations of different frequencies.
arXiv Detail & Related papers (2024-06-21T13:54:40Z) - Quantum Interference by Vortex Supercurrents [0.0]
We analyze the origin of the parabolic background of magnetoresistance oscillations measured in finite-width superconducting mesoscopic rings with input and output stubs and in patterned films.
The onset of vortices changes the topology of the superconducting state in a mesoscopic ring in a such a way that the full magnetoresistance dynamics can be interpreted owing to the interference of the constituents of the order parameter induced by both the ring with its doubly-connected topology and the vortex lattice in it.
arXiv Detail & Related papers (2023-05-23T11:27:14Z) - Stable Atomic Magnetometer in Parity-Time Symmetry Broken Phase [8.862042024766874]
We show that the spatial degrees of freedom of atoms could become a resource, rather than harmfulness, for high-precision measurement of weak signals.
We demonstrate that, using these spatial-motion-induced split frequencies, the spin system can serve as a stable magnetometer.
arXiv Detail & Related papers (2022-11-17T05:51:11Z) - Magnetic-field-induced cavity protection for intersubband polaritons [52.77024349608834]
We analyse the effect of a strong perpendicular magnetic field on an intersubband transition in a disordered doped quantum well strongly coupled to an optical cavity.
The magnetic field changes the lineshape of the intersubband optical transition due to the roughness of the interface of the quantum well from a Lorentzian to a Gaussian one.
arXiv Detail & Related papers (2022-10-14T18:00:03Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Superradiant phase transition in complex networks [62.997667081978825]
We consider a superradiant phase transition problem for the Dicke-Ising model.
We examine regular, random, and scale-free network structures.
arXiv Detail & Related papers (2020-12-05T17:40:53Z) - Edge states in quantum spin chains: the interplay among interaction,
gradient magnetic field and Floquet engineering [11.419243482331034]
We explore the edge defects induced by spin-spin interaction in a finite paradigmatic Heisenberg spin chain.
The interplay between these two types of edge defects allows us to manipulate the magnon edge states from an isolated band into a continuum one.
Our study offers new insights to understand and control the magnon edge states governed by the interplay between edge defects induced by the spin-spin interaction and the Floquet-Wannier-Zeeman manipulation.
arXiv Detail & Related papers (2020-11-12T02:17:22Z) - Photon Condensation and Enhanced Magnetism in Cavity QED [68.8204255655161]
A system of magnetic molecules coupled to microwave cavities undergoes the equilibrium superradiant phase transition.
The effect of the coupling is first illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model.
A transmission experiment is shown to resolve the transition, measuring the quantum electrodynamical control of magnetism.
arXiv Detail & Related papers (2020-11-07T11:18:24Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - Spin fluctuations in quantized transport of magnetic topological
insulators [13.057879371185681]
In magnetic topological insulators, quantized electronic transport is interwined with spontaneous magnetic ordering, as magnetization controls band gaps.
We show that considering the exchange gaps at the mean-field level is inadequate to predict phase transitions between electronic states of distinct topology.
arXiv Detail & Related papers (2020-10-01T17:42:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.