論文の概要: Consistent Approximations in Composite Optimization
- arxiv url: http://arxiv.org/abs/2201.05250v1
- Date: Thu, 13 Jan 2022 23:57:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-18 00:05:12.124050
- Title: Consistent Approximations in Composite Optimization
- Title(参考訳): 複合最適化における一貫性近似
- Authors: Johannes O. Royset
- Abstract要約: 我々は最適化問題の一貫した近似のためのフレームワークを開発する。
このフレームワークは幅広い最適化のために開発されている。
プログラム解析法は、拡張非線形プログラミングソリューションを例証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Approximations of optimization problems arise in computational procedures and
sensitivity analysis. The resulting effect on solutions can be significant,
with even small approximations of components of a problem translating into
large errors in the solutions. We specify conditions under which approximations
are well behaved in the sense of minimizers, stationary points, and level-sets
and this leads to a framework of consistent approximations. The framework is
developed for a broad class of composite problems, which are neither convex nor
smooth. We demonstrate the framework using examples from stochastic
optimization, neural-network based machine learning, distributionally robust
optimization, penalty and augmented Lagrangian methods, interior-point methods,
homotopy methods, smoothing methods, extended nonlinear programming,
difference-of-convex programming, and multi-objective optimization. An enhanced
proximal method illustrates the algorithmic possibilities. A quantitative
analysis supplements the development by furnishing rates of convergence.
- Abstract(参考訳): 最適化問題の近似は計算手順と感度解析に現れる。
ソリューションに対する結果として生じる影響は、ソリューション内の大きなエラーに変換する問題のコンポーネントの小さな近似によっても大きい。
我々は、最小化点、定常点、レベルセットといった意味で近似がうまく振る舞う条件を定義し、一貫した近似の枠組みにつながる。
このフレームワークは、凸でも滑らかでもない幅広い複合問題のために開発されている。
本稿では,確率的最適化,ニューラルネットワークに基づく機械学習,分散ロバストな最適化,ペナルティと拡張ラグランジアン法,インテリアポイント法,ホモトピー法,スムースな手法,拡張非線形プログラミング,差分凸プログラミング,多目的最適化などの例を用いて,フレームワークを実証する。
拡張近位法ではアルゴリズムの可能性を示す。
定量的分析は収束率の調整による発展を補う。
関連論文リスト
- Low-Rank Extragradient Methods for Scalable Semidefinite Optimization [0.0]
この問題が低ランクの解を許容する高次元かつ高可算な設定に焦点をあてる。
これらの条件下では、よく知られた過次法が制約付き最適化問題の解に収束することを示す理論的結果がいくつか提示される。
論文 参考訳(メタデータ) (2024-02-14T10:48:00Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - Efficient Gradient Approximation Method for Constrained Bilevel
Optimization [2.0305676256390934]
大規模高次元データを用いたバイレベル最適化が開発されている。
本稿では凸と微分不可能な近似を伴う制約付き二値問題について考察する。
論文 参考訳(メタデータ) (2023-02-03T19:34:56Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
空間的制約が存在する場合の高次元統計量と非破壊的最適化の関連について検討する。
これらの問題に対する新規で簡単な最適化法を開発した。
結論として、効率よくステーションに収束する一階法は、これらのタスクに対して効率的なアルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-09-23T17:38:24Z) - Optimization on manifolds: A symplectic approach [127.54402681305629]
本稿では、最適化問題を解くための一般的な枠組みとして、ディラックの制約付きハミルトン系理論の散逸拡張を提案する。
我々の(加速された)アルゴリズムのクラスは単純で効率的なだけでなく、幅広い文脈にも適用できる。
論文 参考訳(メタデータ) (2021-07-23T13:43:34Z) - On Constraints in First-Order Optimization: A View from Non-Smooth
Dynamical Systems [99.59934203759754]
本稿では,スムーズな制約付き最適化のための一階法について紹介する。
提案手法の2つの特徴は、実現可能な集合全体の投影や最適化が避けられることである。
結果として得られるアルゴリズムの手順は、制約が非線形であっても簡単に実装できる。
論文 参考訳(メタデータ) (2021-07-17T11:45:13Z) - Constrained and Composite Optimization via Adaptive Sampling Methods [3.4219044933964944]
本論文の動機は,制約付き最適化問題を解くための適応サンプリング手法を開発することにある。
本論文で提案する手法は、f が凸(必ずしも微分可能ではない)である合成最適化問題 min f(x) + h(x) にも適用できる近位勾配法である。
論文 参考訳(メタデータ) (2020-12-31T02:50:39Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
また, 共通最適化手法は, 問題が適度に大きい場合, 変分近似の精度が低下することを示した。
これらの結果から,基礎となるアルゴリズムをマルコフ連鎖の生成とみなして,より堅牢で正確な最適化フレームワークを開発する。
論文 参考訳(メタデータ) (2020-09-01T19:12:11Z) - IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method [64.15649345392822]
本稿では,局所関数が滑らかで凸な分散最適化環境下での原始的手法設計のためのフレームワークを提案する。
提案手法は,加速ラグランジアン法により誘導されるサブプロブレム列を概ね解いたものである。
加速度勾配降下と組み合わせることで,収束速度が最適で,最近導出された下界と一致した新しい原始アルゴリズムが得られる。
論文 参考訳(メタデータ) (2020-06-11T18:49:06Z) - Adaptive First-and Zeroth-order Methods for Weakly Convex Stochastic
Optimization Problems [12.010310883787911]
我々は、弱凸(おそらく非滑らかな)最適化問題の重要なクラスを解くための、適応的な段階的な新しい手法の族を解析する。
実験結果から,提案アルゴリズムが0次勾配降下と設計変動を経験的に上回ることを示す。
論文 参考訳(メタデータ) (2020-05-19T07:44:52Z) - Halpern Iteration for Near-Optimal and Parameter-Free Monotone Inclusion
and Strong Solutions to Variational Inequalities [14.848525762485872]
非拡張写像、単調リプシッツ作用素、近位写像の間の接続を利用して、単調包含問題に対する準最適解を得る。
これらの結果は、変分不等式問題に対する強い解の近似、凸凸凹 min-max 最適化問題の近似、および min-max 最適化問題における勾配のノルムの最小化について、ほぼ最適に保証される。
論文 参考訳(メタデータ) (2020-02-20T17:12:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。