$\ell_1$-norm constrained multi-block sparse canonical correlation
analysis via proximal gradient descent
- URL: http://arxiv.org/abs/2201.05289v1
- Date: Fri, 14 Jan 2022 03:35:01 GMT
- Title: $\ell_1$-norm constrained multi-block sparse canonical correlation
analysis via proximal gradient descent
- Authors: Leying Guan
- Abstract summary: We propose a proximal gradient descent algorithm to solve the multi-block CCA problem.
We show that the resulting estimate is rate-optimal under suitable assumptions.
We also describe an easy-to-implement deflation procedure to estimate multiple eigenvectors sequentially.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-block CCA constructs linear relationships explaining coherent
variations across multiple blocks of data. We view the multi-block CCA problem
as finding leading generalized eigenvectors and propose to solve it via a
proximal gradient descent algorithm with $\ell_1$ constraint for high
dimensional data. In particular, we use a decaying sequence of constraints over
proximal iterations, and show that the resulting estimate is rate-optimal under
suitable assumptions. Although several previous works have demonstrated such
optimality for the $\ell_0$ constrained problem using iterative approaches, the
same level of theoretical understanding for the $\ell_1$ constrained
formulation is still lacking. We also describe an easy-to-implement deflation
procedure to estimate multiple eigenvectors sequentially. We compare our
proposals to several existing methods whose implementations are available on R
CRAN, and the proposed methods show competitive performances in both
simulations and a real data example.
Related papers
- Maximum a Posteriori Inference for Factor Graphs via Benders' Decomposition [0.38233569758620056]
We present a method for maximum a-posteriori inference in general Bayesian factor models.
We derive MAP estimation algorithms for the Bayesian Gaussian mixture model and latent Dirichlet allocation.
arXiv Detail & Related papers (2024-10-24T19:57:56Z) - Multi-Agent Bayesian Optimization with Coupled Black-Box and Affine
Constraints [21.38692458445459]
We study the problem of distributed multi-agent Bayesian optimization with both coupled black-box constraints and known affine constraints.
A primal-dual distributed algorithm is proposed that achieves similar regret/violation bounds as those in the single-agent case.
arXiv Detail & Related papers (2023-10-02T08:07:36Z) - Entropic covariance models [0.7614628596146602]
We present a general framework for linear restrictions on different transformations of the covariance matrix.
Our proposed estimation method solves a convex problem and yields an $M$-estimator.
arXiv Detail & Related papers (2023-06-06T11:25:05Z) - Differentially-Private Hierarchical Clustering with Provable
Approximation Guarantees [79.59010418610625]
We study differentially private approximation algorithms for hierarchical clustering.
We show strong lower bounds for the problem: that any $epsilon$-DP algorithm must exhibit $O(|V|2/ epsilon)$-additive error for an input dataset.
We propose a private $1+o(1)$ approximation algorithm which also recovers the blocks exactly.
arXiv Detail & Related papers (2023-01-31T19:14:30Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Multi-block-Single-probe Variance Reduced Estimator for Coupled
Compositional Optimization [49.58290066287418]
We propose a novel method named Multi-block-probe Variance Reduced (MSVR) to alleviate the complexity of compositional problems.
Our results improve upon prior ones in several aspects, including the order of sample complexities and dependence on strongity.
arXiv Detail & Related papers (2022-07-18T12:03:26Z) - Faster One-Sample Stochastic Conditional Gradient Method for Composite
Convex Minimization [61.26619639722804]
We propose a conditional gradient method (CGM) for minimizing convex finite-sum objectives formed as a sum of smooth and non-smooth terms.
The proposed method, equipped with an average gradient (SAG) estimator, requires only one sample per iteration. Nevertheless, it guarantees fast convergence rates on par with more sophisticated variance reduction techniques.
arXiv Detail & Related papers (2022-02-26T19:10:48Z) - High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
We introduce a new inference scheme that avoids explicit construction of the covariance matrix.
Our approach couples a little-known diagonal estimation result from numerical linear algebra with the conjugate gradient algorithm.
On several simulations, our method scales better than existing approaches in computation time and memory.
arXiv Detail & Related papers (2022-02-25T16:35:26Z) - Adaptive Online Estimation of Piecewise Polynomial Trends [23.91519151164528]
We consider the framework of non-stationary optimization with squared error losses and noisy gradient feedback.
Motivated from the theory of non-parametric regression, we introduce a new variational constraint.
We show that the same policy is minimax optimal for several other non-parametric families of interest.
arXiv Detail & Related papers (2020-09-30T19:30:28Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.